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Abstract: In this paper we propose a visual speech recognition network based on Support Vector Machines. Each word of
the dictionary is described as a temporal sequence of visemes. Each viseme is described by a support vector machine, and
the temporal character of speech is modeled by integrating the support vector machines as nodes into a Viterbi decoding
lattice. Experiments conducted on a small visual speech recognition task show a word recognition rate on the level of the
best rates previously reported, even without training the state transition probabilities in the Viterbi lattice and using very
simple features. This proves the suitability of support vector machines for visual speech recognition.

1. INTRODUCTION

The recognition of speech from the visual information
only is referred as visual speech recognition or lipread-
ing. Different shapes of the mouth (i.e. different mouth
openings, different position of the teeth and tongue) re-
alized during speech cause the production of different
phones. A mouth shape and mouth dynamics correspond-
ing to the production of a phone or a group of phones in-
distinguishable in the visual domain defines a viseme [6].
One can establish a correspondence between visemes and
phonemes, even if this correspondence is not one-to-one,
but one-to-many, due to the involvement of non-visible
parts of the vocal tract in the speech production. Still,
for word dictionary of small size, we can perform good
quality speech recognition using only a viseme-level de-
scription of the words.

Many methods have been proposed for solving the vi-
sual speech recognition problem in the literature. The
different types of solutions adopted vary widely with re-
spect to: the feature types; the classifier used; the class
definition. For example, Bregler uses time-delayed neu-
ral networks (TDNN) for visual classification, and the
outer lip contour coordinates as visual features [4]. Luet-
tin uses active shape models for representing different
mouth shapes, gray level distribution profiles (GLDPs)
around the outer and/or inner lip contours as feature vec-
tors, and finally builds whole-word hidden Markov mod-
els (HMM) for visual speech recognition [5]. Movellan
employs also HMMs for building visual word models, but
uses directly the gray levels of mouth images as features
after some simple preprocessing to exploit the vertical
symmetry of the mouth [3].

Despite the variety of existing strategies for visual
speech recognition, there is still ongoing research in this
area, attempting to: 1) find the most suitable features
and classification techniques to discriminate as good as
possible between different mouth shapes, but to keep in
the same class the mouth shapes corresponding to the

same phone produced by different individuals (i.e., to
be individual-independent) thus leading to higher visual
speech recognition rates; 2) require as few processing of
the mouth image as possible, to allow the implementation
in real time of the mouth shape classifier considering that
the end use of mouth shape classifier is in audio-visual
speech recognition systems, which are supposed to work
in real-time; 3) facilitate the easy integration of audio and
video speech recognition.

In this paper, we aim to contribute to the first two
aspects mentioned above by examining the suitability of
support vector machines (SVMs) for visual speech recog-
nition tasks motivated by the fact that SVMs have been
proved powerful classifiers in various pattern recognition
applications such as face detection, face recognition, etc.,
to mention a few. Very good results in audio speech
recognition using SVMs were recently reported in [1].
No attempts in applying SVMs for visual speech recog-
nition have been reported so far, although a somehow
closely related application is described in [2],where SVMs
were applied for detecting the degree of opening/smile of
mouth images in videosequences. This work uses SVMs
for linear regression, not for classification task. Thus, ac-
cording to the best of the author’s knowledge, the use of
SVMs as visual speech classifiers is a novel idea.

One of the reasons for not using SVMs in audiovi-
sual speech recognition so far is the fact that they are
inherently static classifiers, whilst speech is a dynamic
process, where the temporal information is essential for
recognition. A solution to mitigate this deficiency is pre-
sented in [1], where a combination of HMM with SVM
is proposed. In this paper we adopt a similar strategy for
modeling the visual speech dynamics with the difference
that we shall use only the Viterbi algorithm employed by
an HMM to create dynamically visual word models. An-
other novel aspect in the visual speech recognition ap-
proach proposed here refers to the strategy adopted for
building the word models: while most of the applications
presented in the literature [1, 5, 3] build whole word mod-



els as basic visual models, our basic visual models are
viseme models, and the visual word model is obtained
by the combination of these basic models into a temporal
dynamic sequence. This approach offers the advantage of
an easier generalization to large vocabulary word recog-
nition tasks without significantly increasing the storage
requirements by maintaining the dictionary of basic vi-
sual models needed for word modeling into a reasonable
limit.

The word recognition rate obtained is on the level of
the best previous reported rates in literature, although we
will not attempt to learn the state transition probabilities.
In the case of using very simple features (i.e. pixels), our
word recognition rate is superior to the ones reported in
the literature. The viseme-oriented approach also facili-
tates the integration of audio and visual speech recogni-
tion.

2. OVERVIEW OF SUPPORT VECTOR
MACHINES

SVMs is a principled technique to train classifiers that
stems from statistical learning theory [7, 8]. Their root
is the optimal hyperplane algorithm. They minimize a
bound on the empirical error and the complexity of the
classifier at the same time. Accordingly, they are capable
of learning in sparse high-dimensional spaces with rela-
tively few training examples. Let ���� ���, � � �� �� � � � � � ,
denote � training examples where �� comprises an � -
dimensional pattern and �� is its class label. Without any
loss of generality we shall confine ourselves to the two-
class pattern recognition problem. That is, � � � �������.
We agree that �� � �� is assigned to positive examples,
whereas �� � �� is assigned to counterexamples.

The data to be classified by the SVM might be lin-
early separable in their original domain or not. If they are
separable, then a simple linear SVM can be used for their
classification. However, the power of SVMs is demon-
strated better in the nonseparable case, when the data can-
not be separated by a hyperplane in their original domain.
In the latter case, we can project the data into a higher di-
mensional Hilbert space and attempt to linearly separate
them in the higher dimensional space using kernel func-
tions. Let � denote a nonlinear map� � �� � � where
� is a higher-dimensional Hilbert space. SVMs construct
the optimal separating hyperplane in �. Therefore, their
decision boundary is of the form:
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�
��
���

	� �� 
������ � �

�
(1)

where 
���� ��� is a kernel function that defines the dot
product between ����� and ����� in �, and 	� are the
nonnegativeLagrange multipliers associated with the quadratic
optimization problem that aims to maximize the distance
between the two classes measured in � subject to the
constraints

�
������ � � � � for �� � ��

�
������ � � � � for �� � ��. (2)

Frequently used kernel functions are:

1. the polynomial kernel:

K�x�� x�� � ��x�� x� � ���;

2. the Radial Basis Function (RBF) kernel:

K�x�� x�� � 
�����	x� � x� 	��.

In the following, we will omit the sign function from the
decision boundary (1) that simply makes the optimal sep-
arating hyperplane an indicator function.

To enable the use of SVMs in visual speech recogni-
tion, when we model the speech as a temporal sequence
of symbols corresponding to the different phones pro-
duced, we shall employ the SVMs as nodes in a Viterbi
lattice. The nodes of such a Viterbi lattice are supposed
to generate the posterior probabilities of the correspond-
ing symbols to be emitted [10], and the standard SVMs
do not provide such probabilities as output. A good so-
lution to map the SVM outputs into probabilities is pro-
posed by Platt [11]. Having a trained SVM, we can con-
vert its output to probability by training the parameters
of a sigmoidal mapping function. In general, the class-
conditional densities on either sides of the SVM’s hy-
perplane are exponential. So, Bayes’ rule on two expo-
nentials suggests the following parametric form of a sig-
moidal function:

� �� � ��	����� �
�

� � 	
�������� � ���
(3)

where �� and �� are the parameters of the sigmoidal map-
ping to be derived for the trained SVM under considera-
tion with �� � �. � �� � ��	����� gives directly the
posterior probability to be used in the Viterbi decoder.
The parameters �� and �� are derived from the training
set ������� ���, � � �� �� � � � � � , using maximum likeli-
hood estimation. The detailed description of the training
algorithm can be found in [11].

3. THE PROPOSED APPROACH TO VISUAL
SPEECH RECOGNITION

The problem of discriminating between different mouth
shapes during speech production can be viewed as a pat-
tern recognition problem. In this case, the set of patterns
is a set of feature vectors �x��� � � �� �� � � � � � , each of
them describing some mouth shape. The feature vector x �

is a representation of the mouth image (either low-level,
such as the gray levels from a rectangular image region
containing the mouth, geometric parameters such as the
mouth width, height, perimeter, or the coefficients of a
linear transformation of the mouth image). All the fea-
ture vectors from the set have the same number of com-
ponents,� .

Let us denote the pattern classes by 
� , � � �� �� � � � � �
where� is the total number of classes. Each pattern class

� is a group of patterns that represent mouth shapes cor-
responding to the same viseme. The class label of the
class 
� is denoted by �� .

A network of � parallel SVMs is designed where
each SVM is trained to classify test patterns in class 
�
or its complement 
�� (i.e., not in class 
�). To derive an
unambiguous classification we assign x� to the class 
�



according to a maximum a posteriori classification rule,
such that:

� ��� � � 	���x�� � � 
��
	

�


���
� ��� � � 	���x�� � (4)

where the right side probabilities are given by the SVMs
probabilistic outputs.

This pattern recognition problem can be applied to
visual speech recognition in the following way: each un-
known pattern represents the image of the speaker’s face
at a certain time instant; each class label represents one
viseme. Accordingly, we shall identify what viseme is
produced at any time instant in the spoken sequence.

By its nature, speech is a temporal process. Each spo-
ken word can be modelled in the visual domain as a se-
quence of visemes corresponding to some basic sounds,
called here visemic model. The most natural way of rep-
resenting the word models in the temporal domain, start-
ing only from the symbolic visemic model and from the
total number of � frames in the word pronunciation, is
to assume that the duration of each viseme in the word
pronunciation can be whatever, but necessarily not zero.
Thus, we can create a temporal network of models corre-
sponding to the different possible durations of the visemes
in the model, containing as many states as many frames
we have in the videosequence, that is, � . The most straight-
forward way to represent such a network of models is
the Viterbi algorithm [10]. The resulting Viterbi lattice
is shown in Figure 1 for the same example of the word
“one”, where the visemes present in the word pronuncia-
tion have been denoted with the same letters as the under-
lying phones. The paths formed by the solid lines show
the possible model realizations. Each node signifies the
realization of the corresponding viseme at that particular
time instant. Each word from the dictionary of � words,
��, � � �� �� � � � � �, will have its own Viterbi lattice
model. Let us interpret each node in the lattice of Figure

Fig. 1. The temporal Viterbi lattice for the pronunciation
of the word “one” in a videosequence of 5 frames

1 as the probability that the corresponding symbol �� is
emitted at the time instant �. We denote this probability
by �
��. Each solid line between the nodes correspond-
ing to the symbol �� at the time instant � and ���� at
the time instant ��� represents the transition probability
from the state that is responsible for the generation of ��
to the state that generates the symbol ����. We denote

the latter probability by �
�
��� , where �� and ���� may
be different or not.

Having a videosequence of � frames for a word pro-
nounced and such a Viterbi model for each word � �, � �
�� �� � � � � � from the dictionary, we can compute the prob-
ability for the word �� to be produced following a path �
in the Viterbi lattice as:

���� �

��
���

�
�� �

����
���

�
�
������� � (5)

and the probability for the word �� to be produced as the
maximum over all possible ���� s. Among the words that
can be produced following all the possible paths in all the
� Viterbi lattices, the most probable word, that is, whose
probability ��, � � �� �� � � � � �, is maximum is finally
recognized.

In the visual speech recognition approach discussed
in this paper, the symbol emission probabilities �
�� are
given by the corresponding SVMs, ���
� . To a first
approximation, we assume equal transition probabilities
�
�
��� between whatever two symbol emission states.

4. EXPERIMENTAL RESULTS

To evaluate the recognition performances of the proposed
SVM-based visual speech recognizer, we choose to solve
the task of recognizing the first four digits in English from
the small audiovisual database Tulips1 [3], frequently used
in similar visual speech recognition experiments. First
we define the viseme classes for each word, based on
their phonetic descriptions [12] trough the manual anno-
tation of the training set. The visual speech recognizer
requires the training of 12 different SVMs, one for each
distinct mouth shape considered. We used for our exper-
iments SVMs with polynomial kernel of degree 3. We
used two types of features: 1) The first type comprises
the gray levels of a rectangular region of interest around
the mouth, downsampled to the size ��� �� and scanned
raw by raw. Each mouth image is represented by a feature
vector of length 256. 2) The second type represents each
mouth image frame at the time �
 by a vector of double
size i.e. � � ��� � ���, that comprises the gray levels
of the rectangular region of interest as previously, and the
temporal derivatives of the gray levels normalized to the
range ��� ���� � �� (where ���� is the maximum gray
level value in mouth image). The temporal derivatives are
simply the pixel by pixel gray level differences between
the frames �
 and �
 � � and are called delta features.

The complete visual speech recognizer was imple-
mented in C++. We used the publicly available SVM-
Light toolkit modules for the training of the SVMs [9]
and implemented in C++ the module for learning the sig-
moidal mapping of the SVMs output to probabilities and
the module for generating the Viterbi decoder lattice based
on SVMs with probabilistic outputs.

We performed speaker-independent visual speech recog-
nition tests, using the leave-one-out testing strategy for
the 12 subjects in the Tulips1 database. More precisely,
the testing strategy was as follows: we trained the sys-
tem 12 times separately, each time using 11 subjects in



Table 1. The overall WRR of the SVM dynamic network compared to other techniques.
Method SVM-based

dynamic net-
work without
delta features

SVM-based
dynamic
network with
delta features

AAM and HMM
system (shape +
intensity model,
inner + outer lip
contour) without
delta features [5]

AAM and HMM
system (shape +
intensity model,
inner + outer lip
contour) with
delta features [5]

Stochastic
networks
without delta
features [3]

Stochastic
networks
with delta
features [3]

WRR
��� 76 90.6 87.5 90.6 60 89.93

the training set and leaving the ���� subject out for test-
ing. In this way, we obtained a total of 96 video test
sequences. We examine the overall percentaged word
recognition rate WRR, comparing this result with the ones
reported in literature under similar conditions (i.e., using
the same features, the same database and the same testing
procedure) [5, 3] in Table 1. We can see that our results
are on the same level as the best ones reported in the liter-
ature ( !! � �����). However the features used by us
are simpler than those used in literature to obtain the same
WRR. For the shape � intensity models [5] the gray lev-
els should be sampled in the exact subregion of the mouth
image containing the lips, around the inner and outer lip
contours, and should exclude the skin areas. Accordingly,
the method reported in [5] requires the tracking of the
lip contour in each frame, which increases the processing
time of visual speech recognition. Moreover we notice
that our very good WRR was obtained without training
the transition probabilities in the Viterbi decoding lattice
from whole-word models. An improvement of the WRR
is expected when training of the transition probabilities is
implemented and the trained transition probabilities are
incorporated in the Viterbi decoding lattices.

5. CONCLUSIONS

We examined the suitability of SVMs with probabilistic
outputs in visual speech recognition by employing them
into a dynamic temporal network implemented by a Viterbi
decoding lattice as nodes and testing the proposed method
on a small visual speech recognition task. We obtained
good word recognition rates as compared to the state of
the art results from the literature. This demonstrates that
SVMs are promising classifiers for visual speech recog-
nition tasks. Another advantage of the viseme-oriented
modeling method proposed is the possibility of easier gen-
eralization to larger vocabularies. In our future research,
we will try to improve the performance of the visual speech
recognizer by using other kernel functions and learning
the state transition probabilities of the Viterbi decoding
lattice.
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