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Abstract. Speech recognition based on visual information is an emerg-
ing research field. We propose here a new system for the recognition of
visual speech based on support vector machines which proved to be pow-
erful classifiers in other visual tasks. We use support vector machines to
recognize the mouth shape corresponding to different phones produced.
To model the temporal character of the speech we employ the Viterbi
decoding in a network of support vector machines. The recognition rate
obtained is higher than those reported earlier when the same features
were used. The proposed solution offers the advantage of an easy gener-
alization to large vocabulary recognition tasks due to the use of viseme
models, as opposed to entire word models.

1 Introduction

Visual speech recognition refers to the task of recognizing the spoken words based
only on the visual examination of the speaker’s face. This task is also referred
as lipreading, since the most important visible part of the face examined for
information extraction during speech is the mouth area. Different shapes of the
mouth (i.e. different mouth openings, different position of the teeth and tongue)
realized during speech cause the production of different sounds. One can establish
a correspondence between the mouth shape and the phone produced, even if
this correspondence will not be one-to-one, but one-to-many, due to the fact
that invisible parts of the vocal tract are also involved in speech production as
well. For small size word dictionaries, we can still perform good quality speech
recognition using the visual information regarding the mouth shape only.

So far, many methods have been reported in the literature for solving the
visual speech recognition problem. The different types of solutions adopted vary
widely with respect to: 1) the feature types; 2) the classifier used; and 3) the class
definition. For example, Bregler uses time-delayed neural networks (TDNN) for
visual classification, and the outer lip contour coordinates as visual features [6].



Luettin uses active shape models for representing different mouth shapes, gray
level distribution profiles (GLDPs) around the outer and/or inner lip contours as
feature vectors, and finally builds whole-word hidden Markov models (HMMs)
for visual speech recognition [7]. Movellan employs also HMM for building visual
word models, but using as features directly the gray levels of the mouth images,
after some simple preprocessing to exploit the vertical symmetry of the mouth
[5].

Despite the big variety of existing strategies for visual speech recognition,
there is still ongoing research in this area, attempting: 1) to find the most suit-
able features and classification techniques to discriminate efficiently between the
different mouth shapes, but to keep the mouth shapes corresponding to the same
phone produced by different individuals in the same class (i.e., to develop speaker
independent techniques); 2) to require limited processing of the mouth image so
that the implementation of the mouth shape classifier in real time is feasible; 3)
to facilitate the easy integration of audio and video speech recognition.

In this paper, we aim to contribute to the first of the above mentioned as-
pects in visual speech recognition, by examining the suitability of a new type
of classifiers for visual speech recognition tasks, the support vector machines
(SVMs). We are motivated by the success of SVMs in various pattern recogni-
tion applications including visual classification tasks such as biometric person
authentication, medical image processing, etc.

The use of SVMs as classifiers for automatic speech recognition is a new
idea. Very good results in audio speech recognition using SVMs were recently
reported in [1]. No attempts in applying SVMs for visual speech recognition have
been reported so far, although a somehow closely related application is described
n [11], where SVMs were applied for detecting the degree of opening/smile of
mouth images in videosequences. This work uses SVMs for linear regression, not
for classification task. Thus, according to the best of the author’s knowledge,
the use of SVMs as visual speech classifiers is a novel idea. Regarding SVMs ap-
plications as visual classifiers, there are some very good results in face detection
and face recognition [2,3] and in dynamical object detection in videosequences
[13].

One of the reasons for not using SVMs in automatic speech recognition so far
is the fact that they are inherently static classifiers, whilst speech is a dynamic
process, where the temporal information is essential for recognition. This means
one cannot use directly SVMs for speech recognition. A solution to this problem
is presented in [1], where a combination of HMM and SVM is proposed. In this
paper we adopt a similar strategy for modeling the visual speech dynamics with
the difference that we shall use only the Viterbi algorithm to create dynamical
visual word models.

Another novel aspect in the visual speech recognition approach proposed here
refers to the strategy adopted for building the word models: while most of the
applications presented in the literature [1, 7, 5] build whole word models as basic
visual models, our basic visual models are mouth shape models (viseme models),
and the visual word model is obtained by the combination of these basic models



into a temporal dynamic sequence. This approach offers the advantage of an easy
generalization to large vocabulary word recognition tasks without a significant
increase in storage requirements by maintaining the dictionary of basic visual
models needed for word modeling to a reasonable limit.

The visual speech recognition results obtained are very promising as com-
pared to similar approaches reported in the literature. This shows that SVMs
are a promising alternative for visual speech recognition and encourages the
continuation of the research in this direction.

The outline of the paper is as follows. Section 2 details the proposed vi-
sual speech recognition using SVMs. The modeling of temporal speech dynamics
is described in Section 3. Experimental results are presented in Section 4 and
conclusions are drawn is Section 5.

2 Description of the proposed visual speech recognition
approach using support vector machines

The problem of discriminating between different shapes of the mouth during
speech production, the so-called wvisemes, can be viewed as a pattern recogni-
tion problem. In this case the feature vector comprises a representation of the
mouth image, either low-level at pixel-level, or by extracting several geometric
parameters, or by applying some linear transform of the mouth image. The dif-
ferent pattern classes are the different mouth shapes occurred during speech.
For example, in the case of producing the sound “0”, the mouth will have an
open-rounded shape, while for example in the case of sound “t”, the mouth will
have an almost closed position, not rounded, the upper teeth will be visible and
the lower lip will be moved inside.

Obtaining the phonetic description of each word from a possible dictionary
is a simple task, and there are currently many publicly available tools to do this.
Correlations can be established between the different phones produced during
speech and the visemes corresponding to them. However, this correspondence
is not one-to-one, since non-visible parts of the vocal tract are also involved in
speech production, and even more, it depends on the nationality of the different
speakers given the fact that the pronunciation of the same word varies and
is not always according to the “standard” one. Furthermore, although there are
phoneme-to-viseme correspondence tables available in the literature [4], currently
there is not a universally accepted mapping, as in the case of phonemes (cf.
[12]). The solution adopted here is to define the viseme classes and the viseme-
to-phoneme mapping dependent on the application (i.e., the recognition of the
first four digits in English, as spoken by the different individuals in the Tulipsl
database [5]). The viseme classes defined and their corresponding phonemes are
presented in Table 1.

Once we have defined the mapping between the classes of visemes needed
in our application and their corresponding phonemes based on the phonetic
description of each word from the dictionary, we can build the visemic models
of the words as sequences of mouth shapes which could produce the phonetic



Table 1. Viseme-to-phoneme mappings for the first four digits.

Phoneme Corresponding viseme classes
w w (small rounded open mouth state)
ao (larger rounded open mouth state)
wao (medium rounded open mouth state)

AH ah (medium ellipsoidal mouth state)
N n (medium open, not rounded,
mouth state; teeth visible)
T t (medium open, not rounded,
mouth state; teeth and tongue visible)
UwW SAME AS W
TH thi 2 (medium open, not rounded)

R (context| w (small rounded open mouth state)
C-C-V) ao (larger rounded open mouth state)

IY iy (longitudinal open mouth state)
ah (medium ellipsoidal mouth state)
F f1,2,3 (almost closed position; upper
teeth visible; lower lip moved inside)
AO SAME AS W

realizations of the words. Thus, for the small four word dictionary of the first
four digits in English from our application, we have the phonetic and the visemic
models given in Table 2.

SVMs is a principled technique to train classifiers that stems from statistical
learning theory [8,9]. Their root is the optimal hyperplane algorithm. They min-
imize a bound on the empirical error and the complexity of the classifier at the
same time. Accordingly, they are capable of learning in sparse high-dimensional
spaces with relatively few training examples. Let {x;,y;}, i = 1,2,..., N, de-
note IV training examples where x; comprises an M-dimensional pattern and
y; is its class label. Without any loss of generality we shall confine ourselves
to the two-class pattern recognition problem. That is, y; € {—1,+1}. We agree
that y; = +1 is assigned to positive examples, whereas y; = —1 is assigned to
counterexamples.

The data to be classified by the SVM might be linearly separable in their
original domain or not. If they are separable, then a simple linear SVM can be
used for their classification. However, the power of SVMs is demonstrated better
in the nonseparable case, when the data cannot be separated by a hyperplane in
their original domain. In the latter case, we can project the data into a higher
dimensional Hilbert space and attempt to linearly separate them in the higher
dimensional space using kernel functions. Let ¢ denote a nonlinear map @ :
RM — H where H is a higher-dimensional Hilbert space. SVMs construct the
optimal separating hyperplane in H. Therefore, their decision boundary is of the
form:

N
f(x) = sign (Z a; yi K(x,%;) + b) (1)



Table 2. Phonetic and visemic description models of the four spoken words from
Tulipsl database.

Word |Phonetic model|Visemic models
“one” W-AH-N w-ah-n
ao-ah-n
wao-ah-n
“two” T-UW t-w
t-wao
t-ao
“three” TH-R-IY thi 2-w-iy
thl,g—w—ah
th1,2—ao—iy
thy,2-ao-ah
thl,g—iy
“four” F-AO-R f172,3-a0
f1,2,3-w
f1,2,3-wao
f1’273-ao-ah

where K(z1,22) is a kernel function that defines the dot product between &(z1)
and &(zs) in H, and «; are the nonnegative Lagrange multipliers associated with
the quadratic optimization problem that aims to maximize the distance between
the two classes measured in H subject to the constraints

wTdi(xi) +b>1 fory; = +1
wld(x;) +b<1 fory; = —1. (2)

The sign function in the decision boundary (1) simply makes the optimal sepa-
rating hyperplane an indicator function. In the following we will omit this sign
function and use as the output of the SVM classifier the real valued function:

N
f(x) = Z%‘ yi K(x,%;) + b, (3)

as a measure of confidence in the class assignment.

A single SVM can recognize a single mouth shape. To recognize all the mouth
shapes we shall need to define and train one SVM classifier for each mouth shape
and to arrange the SVMs in a parallel structure. The input mouth image is
simultaneously presented to the input of all the SVMs and each of them gives
a real output value showing the confidence in assigning the mouth shape in the
corresponding class. Figure 1 depicts the topology of SVM network built.

The selection of the type of feature vector to be classified by the SVMs
takes into account that by their nature SVMs have the ability of separating
the input data into classes even when the correlation among the data and the
dimensionality of the feature vector is high, due to the projection of the data
into a higher dimensional space performed inside the SVM. This allows us to
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Fig. 1. Topology of SVM network used for visual speech recognition

use very simple features to represent the mouth image, e.g. pixel-level features.
As a consequence, we decided to use as feature vector for the mouth image
whose shape we want to recognize, the vector comprising the gray levels of
the pixels from the mouth image, scanned in row order. The labeling of the
mouth images is done manually. To ensure a good training, only the unambiguous
positive and negative examples are included in the training set of each SVM.
Preprocessing of the mouth images from Tulipsl was needed due to the fact that
the mouth has different scale, position in the image and orientation towards the
horizontal axis from utterance to utterance, varying with the position of the
subject in front of the camera. To compensate for these variations we applied
the normalization procedure of mouth images with respect to scale, translation
and rotation described in [7].

3 Modeling the temporal dynamics of visual speech

In every audiovisual speech sequence, a word is described as a sequence of
phonemes in the audio domain and visemes in the video domain covering a num-
ber of frames. The symbolic phonetic/visemic models show only the sequence
of the different symbols in a word realization without specifying the duration of
each symbol, as this is strongly person-dependent.

The most natural way of representing the word models in the temporal do-
main, starting only from the symbolic visemic model and from the total number
of T frames in the word pronunciation, is to assume that the duration of each
viseme in the word pronunciation can be whatever, but necessarily not zero.



Thus, we can create a temporal network of models corresponding to the differ-
ent possible durations of the visemes in the model, containing as many states as
many frames we have in the videosequence, that is, T'. The most straightforward
way to represent such a network of models is the Viterbi algorithm [14]. One of
the possible visemic models and the resulting Viterbi lattice are shown in Fig-
ures 2 and 3 for the example of the word “one”, where the visemes present in the
word pronunciation have been denoted according to Table 1. The paths formed
by the solid lines in the Vitterbi lattice from Figure 3 show the possible model
realizations. Each node of the Vitterbi lattice in Figure 3 signifies the realization
of the corresponding viseme at that particular time instant. Each visemic word
model from the set of D visemic description models of the four words in the
dictionary, given in Table 2, wy, d =1,2,..., D, will have its own Viterbi lattice
model. In the current application, D = 15.

Fig. 2. Temporal sequence for the pronunciation of the word “one”

Visemic
symbolic| hnodel
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Fig. 3. The temporal Viterbi lattice for the pronunciation of the word “one” in a
videosequence of 5 frames

Let us interpret each node in the lattice of Figure 3 as a measure of confidence
that the corresponding symbol oy, is emitted at the time instant k. We denote this



measure of confidence by ¢,, . Each solid line between the nodes corresponding
to the symbol o, at time instant k and o1 at time instant k + 1 represents the
transition probability from the state that is responsible for the generation of oy
to the state that generates the symbol of1. We denote the latter probability by
Qo 0n41> Where o and opy1 may be different or not. To a first approximation,
we assume equal transition probabilities a,, o, , between whatever two symbol
emission states. Thus, they do not contribute to differentiate between the costs
of following different paths in the Viterbi lattice.

Having a videosequence of T" frames for a word pronounced and such a Viterbi
model for each visemic word model wy, d = 1,2,..., D, we can compute the
confidence for the visemic word model wy to be produced following a path ¢ in
the Viterbi lattice as:

T
Cdp = Z Copk |d, 0, (4)
=1

independent of a,,_,, and the confidence score that the visemic word model
wy was produced is the maximum over all possible ¢4 . Among the words that
can be produced following all the possible paths in all the D Viterbi lattices, the
most plausible word, that is, the one corresponding to the visemic model with
the maximum confidence score ¢4, d = 1,2,..., D, is finally recognized. In the
visual speech recognition approach discussed in this paper, the symbol emission
measures of confidence ¢, are given by the corresponding SVMs, SV M,, .

4 Experimental results

To evaluate the recognition performance of the proposed SVM-based visual
speech recognizer, we choose to solve the task of recognizing the first four digits
in English. As experimental data we used the small audiovisual database Tulipsl
[5], frequently used in similar visual speech recognition experiments. The pho-
netic and visemic description of the four words and the phoneme to viseme
mapping for this application are given in Tables 1 and 2. The visual speech rec-
ognizer requires the training of 12 different SVMs, one for each distinct mouth
shape considered in the Table 1. We used for our experiments SVMs with a
polynomial kernel of degree 3. For the training of the SVMs we used the pub-
licly available SVMLight toolkit [10]. The complete visual speech recognizer was
implemented in C++ programming language. In the module implementing the
Viterbi decoder for all the possible visual word models, the SVM classifiers in the
nodes of a Viterbi decoder were implemented using the classification module of
the SVMLight toolkit. We performed speaker-independent visual speech recog-
nition tests, using the leave-one-out testing strategy for the 12 subjects in the
Tulips1 database. More precisely, the testing strategy was as follows: we trained
the system 12 times separately, each time using 11 subjects in the training set
and leaving the 12th subject out for testing. In this way, we obtained actually
24 test sequences per word, due to the fact that Tulipsl database contains 2
pronunciations per subject for each word (Setl and Set2). This gives a total of
24 x 4 words = 96 video test sequences.



We examine the overall word recognition rate (WRR) comparing this result
with those reported in literature under similar conditions (i.e., using the same
features, the same database and the same testing procedure) [7,5] in Table 3.

Table 3. The overall WRR of the proposed system of SVM classifiers as compared to
other techniques (without delta features)

Method |Dynamic SVM|Stochastic networks| AAM and HMM|AAM and HMM
network shape model | intensity model
(our method) [5] inner+ outer outer lip
lip contour [7] contour [7]
WRR [%] 76 60 75 65.6

We can see that, for similar features used, our system achieves a slightly
higher word recognition performance than those reported in the literature. The
WRR is lower than the best rate reported without delta features in [7], i.e., 87.5
%, where the shape + intensity information is used with the inner and outer
lip contour model. In the latter model, the intensity is sampled in the exact
subregion of the mouth image comprising the lips and not including the skin
areas. However, the computational complexity of this method is higher to that
of our solution, due to the need for re-definition of the region of interest at each
frame.

To assess the statistical significance of the rates observed, we model the
ensemble {test patterns, recognition algorithm} as a source of binary events, 1
for correct recognition and 0 for an error, with probability p of drawing a 1 and
(1 —p) of drawing a 0. These events can be described by Bernoulli trials. Let us
denote by p the estimate of p. The exact e confidence interval of p is the segment
between the two roots of the quadratic equation [15]:

2(21+ )/2
P= 2 p(1-p) (5)

(p—p) %

where z, is the u-percentile of the standard Gaussian distribution having zero
mean and unit variance, and K = 96 is the total number of tests conducted. We
computed the 95% confidence intervals (e = 0.95) for the WRR, of the proposed
approach and also for the WRRs reported in literature [7, 5], as summarized in
Table 4.

5 Conclusions

In this paper we examined the suitability of SVM classifiers in visual speech
recognition. Due to the inherent temporal dependency of the speech, we also pro-
pose a solution to build a dynamic SVM-based classifier. We tested the proposed
method on a small visual speech recognition task, namely, the visual recognition



Table 4. Confidence interval for the WRR of the proposed system of SVM classifiers
as compared to other techniques (without delta features)

Method |Dynamic SVM|Stochastic networks| AAM and HMM|AAM and HMM
network shape model | intensity model
(our method) [5] inner4outer outer lip
lip contour [7] contour [7]
Confidence
interval [%]| [66.6%;83.5%] [49.9%;69.2%)] [65.5%;82.5%] | [55.6%;74.3%)]

of the first four digits in English. The features used are the simplest possible: di-
rectly the raw gray level values of the mouth image. Under these circumstances,
we obtained good word recognition rates as compared to the similar results from
the literature. This shows that SVMs are promising classifiers for visual speech
recognition tasks. Another advantage of the viseme-oriented modeling method
proposed here is the possibility of easy generalization to large vocabularies. The
existing correlation between the phonetic and visemic models can also lead to
an easy integration of the visual speech recognizer with its audio counterpart. In
our future research, we will try to enhance the performance of the visual speech
recognizer by including delta features in the feature vector, by using other type of
kernel functions and by including the temporal constraints at symbol level in the
temporal word models trough the learning of the state transitions probabilities
for the Vitterbi decoding lattice.
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