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ABSTRACT
Image mosaicing, i.e., reconstruction of an image from a
set of overlapping sub-images, has numerous applications
that include high resolution image acquisition of works of
art. Unfortunately, optimal mosaicing has very large com-
putational complexity that soon becomes prohibitive as the
number of sub-images increases. In this paper, two methods
which achieve significant computational savings by applying
mosaicing in pairs of two sub-images at a time, without sig-
nificant reconstruction losses, are proposed. Simulationsare
used to verify the computational efficiency and good perfor-
mance in terms of matching error of the proposed techniques.

1. INTRODUCTION

Mosaicing is the process of reconstructing or re-stitching
a single, continuous image from a set of overlapping sub-
images. Image mosaicing is essential for the creation of
high resolution digital images of architectural monuments
and works of art (especially of those with considerable di-
mensions like frescoes and large-size paintings) for archival,
digital analysis and restoration purposes [1],[2]. In suchap-
plications, the required very high resolution image acquisi-
tion stresses the limits of acquisition devices. To overcome
this obstacle, digitization procedures that utilize the acqui-
sition of different, overlapping, views, sometimes with the
aid of sensor arrays, and positioning mechanisms are used.
The acquired sub-images (Fig. 1 (a)) are subsequently pro-
cessed by a mosaicing algorithm. If the field of view is split
into M1 rows of M2 images each, it is easy to show that an
M1M2-fold increase in resolution may be attained, compared
to sensor resolution.

Mosaicing is also important in other areas that include
the creation of high-resolution large-scale panoramas forvir-
tual environments, image-based rendering, medical imaging
[3], [8], aerial [9], satellite and underwater [10] imagingetc.
Several image mosaicing techniques have been proposed in
the literature [1]-[10].

The mosaicing process comprises of two steps. The first
step involves the estimation of the optimal displacement of
each sub-image with respect to each neighboring one (assum-
ing only translational camera motion during the acquisition
and no rotation or zooming). This is the most computation-
ally intensive part of the entire process. In the general case
of a set ofM1×M2 sub-images, optimal mosaicing, i.e., mo-
saicing by concurrently searching for the optimal positionof
all sub-images, would require a search in am-dimensional
space, wherem = 2(2M1M2−M1−M2), the term in paren-
thesis representing the number of all pairs of neighboring
sub-images. Obviously the computational cost becomes pro-
hibitive, as the number of sub-images increases. The second

step of the mosaicing process utilizes displacement informa-
tion found in the previous step in order to combine each pair
of neighboring sub-images with invisible seams and thus re-
construct the whole image.

In this paper we will focus on the first step and propose
two methods for reducing the number of computations re-
quired to compute the sub-image displacements without af-
fecting significantly the matching error. It is important to
note that, despite the fact that the methods are illustrated
for the particular case where sub-images are only displaced
(translated) with respect to each other, the proposed match-
ing methodology is applicable to more complex situations,
e.g. cases that involve camera rotation or zooming when ac-
quiring the sub-images.

2. MOSAICING OF TWO IMAGES

Before dealing with the general case of mosaicing an arbi-
trary number of sub-images, the case of two images will be
studied, since it provides significant insight to the problem.
In the following it is assumed that the displacement vectord

is constrained to take values in the following set:

d ∈ {[d1 d2]
T : di ∈ {dimin

, . . . ,dimax
}, i = 1,2} (1)

If I j(n), j = 1, 2, denotes the intensity of thej-th image
at pixel coordinatesn = [n1 n2]

T ∈ W (d), whereW (d) de-
notes the area where the two images overlap (Fig. 2), then the
matching errorE(d) associated with a specific displacement
d, can be expressed as follows:

E(d) =

∑
n∈W (d)

∣

∣I1(n)− I2(n)
∣

∣

p

||W (d)||
(2)

where||W (d)|| denotes the number of pixels in the overlap
areaW (d). For p = 1,2 (2) expresses the Matching Mean
Absolute Error MMAE and the Matching Mean Square Er-
ror MMSE, respectively. Subsequently, the optimal displace-
ment valuedopt can be estimated through the following min-
imization:

dopt = argmin
d

E(d) (3)

From (1) and (3) it is obvious that this minimization pro-
cess requires the evaluation of (2) over all possible values
of d. Block matching techniques (2-d logarithmic search,
three-point search, conjugate gradient search [11]) can be
employed in order to reduce the computational cost associ-
ated with the exhaustive minimization procedure (3). These
procedures may provide estimatesd̂opt of the optimal dis-
placement valuedopt . In our simulations, the 2-d logarithmic
search was employed.



Figure 1: (a) AM1 = 3 by M2 = 2 sub-image acquisition of a painting. (b) Spanning tree mosaicing (STM) reconstructed
image. (c) Reconstructed image after sub-graph spanning tree mosaicing (SGSTM).
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dx

Figure 2: Two neighboring sub-images and the associated
overlap regionW (d) (which is identified by the gray area)
for a displacement ofd = [−4 2]T .

3. MULTIPLE IMAGE SPANNING TREE
MOSAICING

If M1 ×M2 sub-images are to be mosaiced, a displacement
matrix D is involved. This matrix plays a role similar
to that of the displacement vectord of Section 2. The
2M1M2−M1−M2 columns ofD are two-dimensional vec-
tors, each corresponding to a displacement value between
two neighboring sub-images. An expression for the match-
ing quality, similar to the two-image case, can be derived in
the multiple image case, by substitutingd with D in (2) and

extending the summation over all neighboring images. The
optimal valueDopt of the displacement matrix can then be
derived as follows:

Dopt = argmin
D

E(D) (4)

The minimization in the equation above involves pro-
hibitive computational complexity, since in this case a much
larger search space is involved. Indeed, if each of the
column vectors inD is of the form (1),D may assume
((

d1max
−d1min

+1
)(

d2max
−d2min

+1
))2M1M2−M1−M2

dif-

ferent values. Thus, computational complexity increases
exponentially with respect to the number of sub-images.
Moreover, calculation ofE(D) poses additional computa-
tional problems, since the overlap areaW is now a multi-
dimensional set.

In order to avoid exhaustive matching, certain constraints
can be imposed on the way images are matched. Indeed, a
faster method may be devised by performing simple matches
only, i.e. matches between an image and one of its neigh-
bors. The proposed method can be illustrated with the aid of
a mosaicing example. In Fig. 3 (a) a mosaic ofM1 = 2 by
M2 = 2 sub-images is depicted. If one associates each im-
age with a graph node and each local matching of two sub-
images with an edge, the mosaicing of the four images can
be represented by the graph of Fig. 3 (b). Computation of
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Figure 3: (a) A mosaic ofM1 = 2 byM2 = 2 sub-images, (b)
the corresponding graph, (c)-(f) the four possible spanning
trees.

Dopt requires an exhaustive search in 8-dimensional space.
To reduce this complexity, the entire mosaicing process is
decomposed into simpler steps each involving the mosaicing
of two images at a time.Spanning trees can provide a rep-
resentation of the possible mosaicing procedures, under this
constraint. Figs. 3 (c)-(f) illustrate the four different spanning
trees that correspond to the graph of Fig. 3 (b). For example,
in the case depicted in Fig. 3 (d) three two-image matches
should be performed: image A to C, D to C, and D to B,
while Figs. 3 (c), 3 (e), 3 (f) illustrate the other three possible
mosaicing procedures. The final image is the one obtained
by the procedure which results in the smallest matching er-
ror. Obviously, this procedure is sub-optimal but offers a sig-
nificant decrease in computational complexity. The number
of spanning trees that correspond to a certain graph can be
calculated by the matrix-tree Theorem [12]:

Let G be a non-trivial graph with adjacency array A and
degree array C. The number of the discrete spanning trees
of G is equal with each cofactor of array C−A.

Both A andC are matrices of size(M1M2)× (M1M2).
If node vi is adjacent to nodev j, A(i, j) = 1, otherwise
A(i, j) = 0. Additionally, the degree matrix is of the form:

C = diag(d(v1), . . . ,d(vM1M2
)) (5)

whered(vi) denotes the number of nodes adjacent tovi. The
number of trees that correspond to graphs of sizes up to 5 by
5 images are tabulated in Table 1.

Table 1: Number of spanning trees in a graph-grid of size
M1×M2

M2
1 2 3 4 5

1 0 1 1 1 1
2 1 4 15 56 209

M1 3 1 15 192 2415 30305
4 1 56 2415 100352 4140081
5 1 209 30305 4140081 5.6×108

The proposed spanning tree mosaicing (STM) procedure

is outlined below:

1. For each pair of neighboring images calculate the optimal
displacement and the associated matching error.

2. For each spanning tree that is associated with the specific
graph, calculate the corresponding total matching error,
by summing the local matching errors which are asso-
ciated with the two-image matches represented by the
given tree.

3. Select the tree associated with the smallest total matching
error.

4. Perform mosaicing of two images at a time, following a
path on the selected spanning tree.

It should be clarified once again that sub-optimal results
are obtained by the STM procedure, i.e., only an approxima-
tion D̂opt of the optimal matrix is computed. However, this is
compensated by the significant speed gains provided by the
algorithm.

As will be shown in Section 5, similar results are ob-
tained by using either the MMAE or the MMSE criterion.
Thus, MMAE may be preferred since it is faster to compute.

4. SUB-GRAPH SPANNING TREE MOSAICING

By observing Table 1 one can easily notice that, for large val-
ues ofM1 andM2, STM becomes computationally demand-
ing, since the number of trees grows very fast with respect
to grid size. The second approach that is proposed, namely
theSub-graph STM (SGSTM) may, partially, address this is-
sue. In SGSTM, a graph is partitioned into sub-graphs, by
splitting the original graph vertically and/or horizontally. A
sample partitioning of this type is depicted in Fig. 4. By
splitting the graph vertically and then horizontally, foursub-
graphs result. STM can be applied separately to each one of
the four sub-graphs of Fig. 4 (d). Using the data in Table 1,
it can be easily shown that a total of 192+ 1+ 0+ 1 = 194
spanning trees should be examined. Since four images will
be produced by the STM process (one for each sub-graph), a
further STM step will be required, in order to mosaic these
four images into the final image. Thus, 4 more trees should
be added to the trees examined in the previous step, for a to-
tal of 198 trees. In contrast, an STM of the original image set
would require matching error calculations for 100352 trees
(see Table 1).

If the original graph is of sizeM ×M (M = 2ν ), the im-
age can be gradually mosaiced by decomposing the original
graph into an appropriate number of 2×2 sub-graphs, per-
forming STM on each one, decompose once more the re-
sulting M

2 × M
2 graphs and so on, until one image emerges.

After mosaicing a partition’s sub-graphs, new displacement
matrices that correspond to the resulting sub-images should
be calculated. The number of 2× 2 graphs in this proce-
dure is equal toM

2
M
2 + M

4
M
4 + . . . + 1 = M2−1

3 . Since four
spanning trees exist for a 2×2 graph, the matching error of
4M2−1

3 trees should be evaluated. Theoretical speedup val-
ues of SGSTM over STM are depicted in Fig. 5. It is obvious
that SGSTM introduces large computational savings over the
STM approach. Obviously, the quality of SGSTM mosaicing
may be inferior to the one provided by STM, since SGSTM
involves the examination of a significantly smaller number of
possible sub-image matches.
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Figure 4: (a) A graph corresponding to anM1 = 4 byM2 = 4
image mosaic. (b) Vertical split of (a). (c) Horizontal split of
(b). (d) Resulting partition of graph.
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Figure 5: Theoretical speedup of SGSTM over STM, for
graphs of sizeM×M (M = 2ν ).

5. EXPERIMENTAL RESULTS

Simulations were carried out in order to assess the perfor-
mance of the proposed methods, on several image sets. In
the following, comments and results are presented for two of
these sets.

The first set consisted of the 6 sub-images of Fig. 1 (a),
which were arranged inM1 = 3 rows ofM2 = 2 sub-images,
each having resolution of 238×318 pixels. For each one of
the 2M1M2−M1−M2 = 7 pairs of neighboring sub-images,
matching errors were calculated under both the MMAE and
the MMSE criteria. The 2-d logarithmic search was utilized
in order to obtain the optimal displacement. Subsequently,
for each one of the 15 spanning trees that correspond to
this 2×3 node graph, the total matching error (MMAE and
MMSE) was calculated. The optimal reconstructed images
under the MMAE criterion for both STM and SGSTM are
depicted in Fig. 1 (b),(c).

The total time required to find all spanning trees that cor-
respond to the given graph, calculate optimal neighboring

image displacements, and output the overall matching error
of each tree (for both STM and SGSTM) is tabulated in Ta-
ble 2, in seconds. The corresponding matching errors are
also presented in this table. In the case of SGSTM, the orig-
inal 3×2 graph was partitioned into four sub-graphs. Two
of them had sizes 2×1, while the last two consisted of one
node each.

Table 2: STM and SGSTM performance results under the
MMAE and MMSE criteria (image set 1).

MMAE MMSE
Method Error Time Error Time
STM 27.41 2.19 1904 3.43
SGSTM 29.60 1.95 2396 2.20

As expected, the MMAE matching criterion proved to be
faster in both approaches (STM and SGSTM). Speedup (i.e.
the ratio of MMSE to MMAE time) was 1.13 for SGSTM
and 1.57 for STM. From Table 1 it is obvious that match-
ing error calculation is required for(1+ 1+ 0+ 0)+ 4 = 6
trees in the SGSTM case, instead of the 15 trees of the STM
case. However the approximately 2.5 theoretical speedup
factor of SGSTM over STM is not attained, because quoted
time figures take into account the amount of time required
to re-compute displacement matrices. Due to this overhead,
speedup factors of 1.12 (when MMAE is used) and 1.56
(when MMSE is used) were recorded.

The second set consisted of 12 sub-images, which were
arranged on a grid ofM1 = 4 rows of M2 = 3 sub-images
each. Each sub-image had a resolution of 951×951 pixels.
For this graph 2415 spanning trees exist. Similar to the pre-
vious set, for each one of the 2M1M2−M1−M2 = 17 pairs
of neighboring sub-images, matching errors were calculated
under both the MMAE and the MMSE criteria and the 2-d
logarithmic search was utilized in order to obtain the optimal
displacement. Subsequently, for each one of the 2415 span-
ning trees, the total matching error (MMAE and MMSE) was
calculated.

The total time that was required to find all spanning trees,
calculate optimal neighboring image displacements, and out-
put the overall matching error of each tree in this case is pre-
sented in Table 3. In the case of SGSTM, the graph was
decomposed into four sub-graphs: two of size 2×2 and two
of size 2×1, which required the calculation of the total error
for 14 trees, compared to the 2415 of STM. It is evident that,
in this image set, SGSTM is more than an order of magnitude
faster than STM. More specifically, the speedup provided by
the SGSTM method over the STM method was 13.9 when
the MMSE criterion was used and 11.4 for the MMAE cri-
terion. Of course, this speedup was accompanied by a sig-
nificant increase in the matching error. Furthermore, MMAE
proved once again to be computationally more efficient than
MMSE. Sample minimum, maximum, mean and variance of
matching error, over the entire spanning tree set for the STM
approach, are recorded in Table 4.

The twenty spanning trees that exhibited the lowest
MMAE scores for this image set are depicted in Fig. 6.
By studying these spanning trees as well as the MMSE and
MMAE scores, the following observations can be made:

• MMAE optimality is closely related to MMSE optimal-



Table 3: STM and SGSTM performance results under the
MMAE and MMSE criteria (image set 2).

MMAE MMSE
Method Error Time Error Time
STM 6.4 782.7 107 1265
SGSTM 9.7 68.9 228 91

Table 4: STM matching error statistical measures (image set
2).

Measure MMAE MMSE
Maximum 10.7 378
Minimum 6.4 107
Mean 7.9 186
Variance 0.45 1771

ity. Indeed, the trees that exhibited the lowest MMAE
figures, exhibited also the lowest MMSE figures.

• The most characteristic feature of the trees with the low-
est error figures was that optimal matching began from
the center and proceeded outwards. In other words, in
these trees, the central nodes of the graph were con-
nected. On possible explanation is that the matching
quality of the central nodes is more crucial to the over-
all mosaicing quality, than the matching quality of the
other nodes. This issue is currently under investigation.

6. CONCLUSIONS

Two novel methods that can be used for the computationally
efficient mosaicing of sets of sub-images (e.g. in applica-
tions involving high resolution digitization of works of art)
were proposed in this paper. The proposed methods utilize
spanning trees in order to describe the order of the mosaic-
ing process. Exhaustive search for the optimal placement of
sub-images with respect to each other is avoided by examin-
ing only matches between pairs of neighboring images. The
SGSTM method is significantly faster than the STM method
but this speedup comes at the cost of increased matching er-
ror. However, SGSTM can be utilized for fast visualization
of mosaicing results (e.g. mosaic previews).
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