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Abstract. In this paper we explore the independent component decom-
position for face detection. The minimization of the Kullback - Leibler
divergence and the maximization of the entropy are two methods em-
ployed to decompose an original image into its independent components.
‘We built nearest neighbor classifiers based on their resulting independent
components and compare their ability to detect faces to that of support
vector machines.

1 Introduction

There are many applications in which human face detection plays a very impor-
tant role. For example, it can be used in content-based image database index-
ing/searching, surveillance systems, and human-centered computer interfaces. It
also constitutes the first step in a fully automatic face recognition system. A
comprehensive survey on face detection methods is given in [1]. A face detection
technique based on independent component decomposition is developed in this
paper. The principal components matrix of the original face and non-face pat-
terns is assumed to represent a mixture of independent image sources which are
retrieved by using independent component analysis (ICA) through an unmix-
ing matrix. We can reconstruct the original images by combining linearly these
sources. The matrix which contains the coefficients of those combinations is fur-
ther use as the first input of the two nearest neighbor classifiers employed in the
paper. The second input is a combination of the test image with principal com-
ponents matrix and the unmixing matrix. The classification is then performed
according to the nearest neighbor rule. Testing this approach against support
vector machines (SVMs), we found the latter is outperformed by the proposed
method in the face detection task.

2 Spatial independent component analysis

The goal of is to decompose a set of observations into a basis whose components
are statistically independent or, at least, are as independent as possible. ICA
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originally applied to blind source separation [2]. Two ICA representations of
facial patterns have been proposed in [3] for face recognition. The discriminating
ability of ICA alone or when combined with other discriminant criteria, such as
Bayesian framework or Fisher’s linear discriminant, was analyzed in [4].

In our analysis we follow the model proposed in [3]. Consider a matrix X
whose rows contain vectors formed by scanning lexicographically face and non-
face patterns (i.e., image regions). We assume that X contains a mixture of the
original independent sources U. The matrix is decomposed into a family of Y
independent sources passing it through an unmixing matrix D in the attempt to
recover U. Each source (row of Y) is an image whose pixel values are independent
of those in every other image. Accordingly, these images are said to be spatially
independent. We refer to this model as the spatial ICA. Having a number of n
face and non-face images, the number of independent components will be n as
well. In order to have a control on the number of independent components, we
choose m linear combinations of face and non-face patterns, namely the principal
component vectors of the image set. Let PZ denote the matrix that is formed
by the m principal components in its rows. The objective of ICA applied onto
PZ is to find the matrix Y whose rows are the statistically independent sources
by appropriately determining the unmixing matrix D. The relationship between
the three aforementioned matrices is given by [3]:

Y = DPZ. (1)

Frequently, a whitening process applied to PZ is necessary to decorrelate and
normalize the data. If the row means are substracted from P2 and the resulting
matrix is passed through a zero-phase whitening filter which is twice the inverse
square root, the whitening transformation is written as W = 2(PL P, )~ 2
Therefore, the zero - mean input matrix can be computed as the product of the
unmixing matrix and the whitening matrix D,, = DW. Eq. (1) is rewritten as
follows:

Y =D,P! —= Pl =D_'Y. (2)
The reconstructed image by ICA is:
XrecICA = (XPmD;I)Y = CtrainY~ (3)

The matrix Cypqin contains the coefficients of the linear combination of spatial
independent sources Y. Each row of Y comprises the independent component
representation of the face images. Once we have finished training and obtained
Y, a test image can be presented as:

Ctest = D;IPthesb (4)

2.1 Entropy maximization

Given PT  the component in (1) which is responsible for obtaining the inde-
pendent sources is the unmixing matrix D that must be updated in order to



obtain sources that are as independent as possible. Different approaches exist
for this purpose. One way is the so called maximum entropy method which has
been developed in [5]. The matrix Y is transformed into a matrix Z by passing
it through a component-wise nonlinearity denoted by G[-]. As ICA is applied
on the columns of P a realization p; is a combination of the original sources
u; via a mixing matrix A, p; = Au;. Therefore, the sources can be restored
through the unmixing matrix D as y; = Dp; ~ u;. For simplicity we omit the
index j from now on. Passing the sources y through G yields:

z = G(y) = G(Dp) = G(DAu). (5)

Therefore:
u= A_lD_lG_l(z) = U(z). (6)

The entropy is given by:

fu(u)
h(a) = ~Eloe(f2(2))] = ~E | tog , @
| det(J(u))]
where fz(z) and fy(u) are the probability density functions of Z and the sources
U, and J is the Jacobian matrix J = 9z/dy. Using the chain rule, the determi-
nant of J can be evaluated as:

m

| det(J(u)) |= ‘det (g;)‘ = |det(DA)| 1;[1 gz (8)

Maximizing the entropy h(z) requires to maximize the expectation of the de-
nominator term log | det(J(u))| with respect to the matrix D:

2 1og] det(a(w)]) = D] + > 2 1og (gy) (©)

If z; = g(yi) = 1/(1 + e7¥%) is a component-wise nonlinearity applied to all
elements of matrix Y, and taking into account that:

s, = Zz(]- Zz)? (10)

and y = G71(z), (9) becomes:

o det(3(s))) = D77 + (1~ 22)p". (11)

Using the gradient ascent algorithm, the change of the unmixing matrix D is [5]:
AD = (DT + (1 - 2z)p"). (12)

It is more convenient to use the natural gradient instead of the actual one to
avoid inverting D at each step, therefore, the formula for unmixing matrix change
becomes:

Dyt =0+ (1 - 22)y”"|Dy. (13)



2.2 Minimization of the Kullback-Leibler divergence

Another way to obtain independent sources is equivalent with minimizing the
Kullback-Leibler divergence between the probability density function fs(s;D)
parameterized by D and the corresponding factorial distribution defined by [6]:

D) =[] v (yi: D). (14)
=1

The Kullback-Leibler divergence is given by:

fH)D( ZE (yi), (15)

where h(y) is the entropy of the random vector y at the output of the unmixer
and iAL(yl) is the marginal entropy of the ith element of y. The minimization
can be implemented using the method of gradient descent. Following [6], the
unmiximg matrix will be updated at each iteration k as follows:

D1 =Dy + I —0(yr)yr DT, (16)

where I is the identity matrix and the analytical form of the activation function
O(y) is also given by [6].

3 ICA performance evaluation

The ability of ICA for face detection was evaluated using face patterns derived
from the AT&T face database. A description of the data is given in [7]. A number
of 294 non-face patterns was collected and added to 306 face patterns, achieving
a total data base of 600 patterns. 80 of them were used to form the training
set. Each row of the training matrix contains a 238 - dimensional vector. This
matrix was updated according to (13) and (16) for the first and second method
respectively, for 1000 iterations. The learning rate n was set to 1076, The evalu-
ation of the ICA performance was assessed by means of two classifiers. The first
one is based on the nearest neighbor rule and measures the angle between a test
vector and a training one. Let us denote the class of face feature vectors by £q
and those of the non-face feature vectors by £_; . Let c41 be a row vector of
Cirain matrix that corresponds to the nearest face pattern. Let us denote the
nearest non-face neighbor of cses; by c_1. Then we compute the quantities:

T
CtestC—1

df _ ctj;stc*‘rl
letestlllle—1]"

= - _ and d,r =
[ceeselllcl] "

(17)
where d; and d,, ¢ are the cosines of the angle between a test feature vector and
the nearest training one. We assign c;es; to £1 if df > dy, s, otherwise ciesr € L_1.
Notice that the labels for the training set are preserved, therefore we know the
labels corresponding to Cipqin-



The second classifier is the a minimum Euclidean distance classifier. The
Euclidean distance from cyest to ¢k, where k € {£1} is expressed as

||Ctest - Ck||2 = _Q[Cgctest -

2
- _2hk (Ctest) + Ctj;stctesta (18)

T T
Ck Ck] + CiestCtest

where hi(Crest) is a linear discriminant function of ¢;es;. A test pattern is classi-
fied by this classifier (also known as ”maximum correlation classifier”) by com-
puting two linear discriminant function hi1(Ctest) and h_q(cCiest) and assigning
Ciest tO the class corresponding to the maximum discriminant function.

We have investigated the performance of the two previously mentioned clas-
sifiers (17) and (18) by varying the number of principal components extracted
from the training set. The results are depicted in Figure 1. A minimum error of
5.2% was achieved using 20 principal components in the case of the second clas-
sifier. However, the performance of this classifier seems to be almost insensitive
to the number of the principal components used. On the contrary, for the nearest
neighbor rule, the classification error decreases as the number of principal com-
ponents involved increases. A minimum 3.9% classification error is achieved by
keeping 70 linear combinations of 80 training vectors. For comparison, support
vector machines (SVMs) with different kernels [8] were applied to discriminate
between the face and the non-face patterns. The error rates for different SVMs
are included the Table 1, in the same experiment for comparison purposes.
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Fig. 1. Classification error (false acceptance rate plus false rejection rate) versus the
number of principal components for both classifiers.



Table 1. Number of errors (%) for several classifiers.

Face detection methods Errors (%)
ICA-based classifier 1 3.9
ICA-based classifier 2 5.2
linear SVM 6.1

polynomial SVM with degree equals 2 6.3
polynomial SVM with degree equals 3 11.1
radial basis function SVM 5.5
exponential radial basis function SVM 6.1

4 Conclusions

We have exploited the ability of ICA to provide useful features in order to
conduct a face detection task. The combination of ICA with nearest neighbor
classifiers seems to provide a reliable face detector that can outperform SVMs.
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