ON THE STABILITY OF SUPPORT VECTOR MACHINES FOR FACE
DETECTION

I. Buciu

C. Kotropoulos

and 1. Pitas

Department of Informatics, Aristotle University of Thessaloniki
GR-540 06, Thessaloniki, Box 451, Greece, {nelu,costas,pitas}@zeus.csd.auth.gr

ABSTRACT

In this paper we study the stability of support vector ma-
chines in face detection by decomposing their average pre-
diction error into the bias, variance, and aggregation ef-
fect terms. Such an analysis indicates whether bagging, a
method for generating multiple versions of a classifier from
bootstrap samples of a training set, and combining their
outcomes by majority voting, is expected to improve the
accuracy of the classifier. We estimate the bias, variance,
and aggregation effect by using bootstrap smoothing tech-
niques when support vector machines are applied to face
detection in the AT & T face database and we demon-
strate that support vector machines are stable classifiers.
Accordingly, bagging is not expected to improve their face
detection accuracy.

1. INTRODUCTION

Pattern recognition has numerous applications in digital im-
age analysis and computer vision, notably in region segmen-
tation. In this case, image pixels can be assigned to a given
homogenous region according to a homogeneity criterion
on a feature vector. A class is a set of identically labelled
regions in the image domain. A classifier is a system devel-
oped to automatically assign pixels to predefined classes.
In such a task, the classifier takes a new image as input
and segments it into clearly identified regions, if properly
trained. The objectives of classifier design are: to find the
proper feature vector, to employ the proper parameterized
classifier structure that captures the classification rules, to
define the cost function to be minimized, and to select the
optimization algorithm, so that, finally, the resulting data
classification is as close as possible to the available ground
truth.

A performance measure of a classifier is its accuracy,
which is defined as the ratio of correct classifications. Im-
proving the accuracy is equivalent with a decrease in the
prediction error which is defined as 1 — accuracy. A well
known method for estimating the prediction error is the
so-called bootstrap, where sub-samples of the original data
set are analyzed repeatedly [1]. Bagging is a variant of
the bootstrap technique, where each sub-sample is a ran-
dom sample created with replacement from the full data set

This work was supported by the European Union Research
Training Network “Multi-modal Human-Computer Interaction
(HPRN-CT-2000-00111).

[2]. Bagging has produced superior performance in many
applications is found to improve the performance of unsta-
ble classifiers [2]. However, there are several classifiers for
which bagging has either a little effect or may slightly de-
grade the performance of classifier (e.g. k-nearest neighbor,
linear discriminant analysis) [3]. The classifiers for which
bagging does not work are considered as stable classifiers. If
small changes of the training set lead to a varying classifier
performance after bagging, the classifier is considered as an
unstable one. The unstable classifiers are characterized by
a high variance although they can have a low bias. On the
contrary, stable classifiers have a low variance but can have
a high bias.

Support Vector Machines (SVMs) [4, 5] among others
have been successfully applied for face detection [6, 7]. Mo-
tivated by the studies in [3] we address in this paper the
question whether support vector machines are stable classi-
fiers or not. To do so we decompose the average prediction
error in terms of the bias, variance, and aggregation effect
and we estimate the aforementioned terms using bootstrap
techniques. We provide numerical evidence that SVMs are
indeed stable classifiers. Accordingly, bagging will not im-
prove their classification accuracy in the framework consid-
ered. To the best of the authors’ knowledge, such a result
has not been presented elsewhere previously.

2. DECOMPOSITION OF THE AVERAGE
PREDICTION ERROR

Let x be a vector of [attributes x = (z1,x2,...,7;) and
y the class label associated with x. A labeled instance or
training pattern is a pair z = (x,y) where x is an element
from space X and y is an element from space Y. Without
loss of generality, we consider the two-class problem, i.e.
yi € {—1,+1}. The probability distribution over the space
of labeled instances is denoted with F. A sample set is
a set of training samples £ = {z; | ¢ = 1,...,n}. We
call this set the training set. We assume that the training
samples are independent and identically distributed, that
is, Z1,...,Zp ~ F(x,y).

In a classification problem we construct a classification
rule C(x, L) on the basis of £. The output of the classifier
will be then ¢; € {—1,+1}. Let Q[y,c] indicate the loss
function denoting an error measure between the predicted
class label ¢ and the actual class label y. A plausible choice
is Qy,c] = Iyzey, that is, Qy,c] = 1if y # ¢ and 0
otherwise.

Let Z, = (X,,Y,) be a another independent draw from
F called the test pattern with value z, = (%o0,%,). The
average prediction error for the rule C(X,, L) is defined as

err(Yo, 0) = Er{Eor{Q[Y,, C(X,, £)]}} (1)

where Er indicates expectation over the training set £ and
Eor refers to expectation over the test pattern Z, ~ F.
The average prediction error can be decomposed in compo-
nents to allow a further investigation. Several approaches
to decompose the prediction error into its bias and variance
have been suggested. However, due to the fact we would
like to express the decomposition in terms of the loss func-
tion, we are motivated to follow the approach proposed in
[8]-

Let P(y; | x) denote the a posteriori probabilities. It is
well known that the Bayes decision rule yields the minimum
prediction error, that is:

err(Y,Cop) = 1= [max(P(ys | p(0)dx, ()

where

Copi(x) = argmax P(y; | x). ®)
Unfortunately, in real life, it is very difficult to have an exact
knowledge of Copi(x) as long as neither the a priori proba-
bilities P(y;) nor the class conditional densities p(x | y;) are
known. However, it has been shown that, as the size of the
training set goes to infinity, the nearest neighbor prediction
error is bounded below by the Bayes minimum prediction
error and above by the bound given by [9]:

err(Copt) < errnn < err(Copt) (2—

err(Copt)) , (4)

e., the prediction error for the nearest neighbor rule is
bounded above by twice the Bayes prediction error.

Let us form B quasi-replicas of the training set Li,.. .,
Lp, each consisting of n instances, drawn randomly, but
with replacement. An instance (x,y) may not appear in a
replica set, while others appear more than once. The learn-
ing system then generates the classifiers Cy, b = 1,..., B,
from the bootstrap samples and the final classifier Cj4 is
formed by aggregating the B classifiers. Ca is called the
aggregated classifier. In order to classify a test sample x,, a
voting between the class labels y,, derived from each clas-
sifier Cb(Xo, L) = yob is performed and C4(x,) is then the
class with the most votes. In other words

Ca(xo) = Ex{C(x,,L")}. (5)

where £* = {L1,..., LB}. In the following, we define the
bias and variance of a classifier. Let us define the bias and
the wvariance of a classifier C as, bias(C) = err(Copt, Ca)
and var(C) = err(C,Ca), respectively. The bias can be
written further as:

bias(C) = err(Y,C4) — err(Y, Copt). (6)

Another quantity of interest is defined by the aggregation
effect

ae(C) =err(Y,C) —err(Y,Ca) = (0 — 1) -err(Y,Ca) (7)

where:

= err.0) 8)

T err(Y,Ca)’ (
We expressed here the aggregation effect slightly different
than in [8] by introducing the term §, which is useful be-
cause it allows us to compute the aggregation effect regard-
less of the method used to calculate the prediction errors.

Having defined the bias, the variance and the aggrega-

tion effect of a classifier, it can be shown that the following
decomposition is valid [8]:

err(Y,C) = err(Y, Copt) + bias(C) + ae(C). 9)

In the following, we will develop bootstrap estimates for the
aggregated classifier and the terms in (9).

3. BOOTSTRAP ESTIMATES OF THE
AGGREGATED CLASSIFIER AND THE
AVERAGE PREDICTION ERROR
COMPONENTS

Using the leave-one-out strategy, a sample-based estimate
of the prediction error decomposition can be derived accord-
ing to [8]. Following this way, we can draw the numerical
evidence to demonstrate if a classifier is stable or not.
We can estimate the aggregated predictor expressed in
(5) by R
Ca(x) = Ez{C(x,£7)} (10)

where T is the empirical distribution. The computation of
the above expression is performed according to the following
steps:

1. Create ordinary bootstrap samples £* = {z],25...,
z, } with replacement from {z1,2z2...,2,};

2. Repeat B times the step 1, the total bootstrap sam-
ples being L3, b=1,2,...,B;

3. Let N} the number of times z; appears in the b-th
bootstrap sample and let us define:

{1 if NP=0

b _
E=Y0 if N'>o. (11)

If .7?@ is the distribution having probabilities 1/(n — 1)
on all training observations except for x; where it has zero
probability, then the aggregated classifier can be estimated
as:

. 1o &
Ca(x) = o ZEJ?(” {C(xi, Fiy) }

Z[zbfcm,cb)] 12

The estimate of the variance is:

5ar(C) = BBy, {QI0Gx, £3), Calx, Fo)]}
= 13 Bp QIO £),Calii,)l (13)

Here 6A(xz-,.7?(,-)) is the bootstrap estimate of the aggre-
gated classifier built for each 7 and can be expressed by:

Eb I?C(Xia ['Z)

S (14)

aA(Xu]?(i)) =

Then the bootstrap estimate of the variance of classifier
becomes

T (C) = 1 2":{2,, If’Q[C(Xi,ZﬁbZI)_;CA(Xi,f(i))] } (15)

nia
Subsequently, we determine the estimate of the prediction
error for classifier C. Using the leave-one-out cross vali-
dation technique, the average prediction error (1) can be
estimated in the following manner

GE/’I“\’I“(YD,C) = Eﬁ{Ef(i){Q[y,C(X,ﬁ(i))}}, (16)

where the set L(;) contains samples drawn from F;) that
never contain x;, that is, £;) = £ — {(x:,%:)}. Repeating
the steps required for estimating the aggregated predictor,
the final expression for the leave-one-out bootstrap estima-
tion of the prediction error for C' and Cy is:

_ LN [2, BRIy, C(xi, £3))]
err(Yo, C) = —~ ;{ : S 10 } (17)
and
n YOl Cal(x: Foo
& (Yo, Ca) = % > { 2L Q[yicfb(x“f(”)] } (18)
i=1 b

respectively. Now we can estimate the aggregation effect
as:

ae(C) = (0 —1)-err(Ys,Ca). (19)
The minimum (optimal) prediction error can be estimated
as suggested in [9]

érir (Yo, Copt) > a — [— erran)]*/? (20)

where erryy is the prediction error of the 1 - nearest neigh-
bor classifier and o = 1/2 in the case of a two-class problem.
Then, the bias estimate is bounded by:

bias(C) < éri(Y,Ca) — [a — [a(a —errnn)]/?]. (21)

Finally, the bootstrap estimate of prediction error is ob-
tained by

7 (Yo, C) = err(Yo, Copt) + bias(C) + ae(C). (22)

4. EXPERIMENTAL RESULTS

4.1. Data description

The AT&T (former Olivetti) database' was used in our
experiments. This database of faces contains 10 different
images for 40 distinct persons. The images have dimen-
sions of 92 x 112 pixels. The images have been recorded
at different times, with variations in the lighting, facial ex-
pression and facial details (glasses / nonglasses). Each face
image includes fiducial points such as the eyebrow, eyes,
nose, mouth and chin. Each image has been downsampled
several times, yielding finally an image of 17 x 14 pixels.
This preprocessing step was used to reduce the dimension
of input patterns. The ground truth, that is, the true class

ftp://ftp.uk.research.att.com/pub/data/att_faces.zip

label y; = +1 was appended to each face pattern. Non-face
patterns have been collected from images depicting wheels,
bubbles, trees, etc. in the manner described in [10]. There-
fore, the set has 306 face patterns, chosen randomly from
this database, and 294 non-face patterns.

4.2. Support vector machines

Support vector machine (SVM) maps the input vectors x
onto a high-dimensional feature space through a nonlinear
mapping and seeks to construct the optimal separating hy-
perplane in the feature space [4, 5]. The algorithm relies
on the computation of inner products between the so-called
support vectors, i.e., input vectors whose associated Lan-
grage multipliers in the underlying quadratic optimization
problem solved during the training phase are nonzero as
well as between the support vectors and the test vectors. If
we deal with Hilbert feature spaces, there is no need to cal-
culate the inner product in the feature space, because the
inner product can be computed through a kernel function,
K(x,x;), in the original space. In our experiments SVMs
were based on the following kernels: (1) Linear kernel; (2)
Polynomial of degree ¢ = 2; (3) Exponential Radial Basis
Function (ERBF) having o equal to 10. These kernels have
the analytical form listed in Table 1, where || - ||, denotes
the vector p-norm.

Table 1: Kernel functions used in SVMs.

SVM type Kernel function K(x,x;)
Linear x7X;
Polynomial with degree ¢ (xTx; + 1)1
ERBF exp(— 1=l)

The purpose of SVM is to detect faces among the im-
ages. Our experiments had two phases:

4.2.1. Training phase

In this first phase we randomly chose a set of 50 input pat-
terns from the entire data set, thus building the training
set. Since bagging can be useful, especially when the avail-
able amount of data for training is small, we intentionally
kept only 50 patterns from the entire set for training. We
calculated the empirical distribution F and we computed
the leave-one-out bootstrap estimate of the prediction er-
ror of SVMs, the leave-one-out bootstrap estimate of the
prediction error for aggregated classifier, the bias, and the
variance. The number of bootstrap replicas was 21. We
repeated the experiment 10 times by forming other repli-
cas. By increasing the number of bootstrap replicas up to
40, we ran again the experiment 10 times. For compari-
son, we experimented with a 5-nearest neighbor classifier
and the results are depicted in Table 2 for 21 bootstrap
replicas. The values tabulated in Table 2 are averages over
10 runs. The standard deviations are given inside paren-
theses. Note that we took the upper bound of expression
(21) to estimate the bias. From Table 2 it can be seen that

Table 2: Estimated components of the prediction error.

SVM kNN
érr(Y,,C) | 0.5200 (0.0000) | 0.0000 (0.0000)
5ar(C) | 0.0000 (0.0000) | 0.0257 (0.0053)
bias(C) | 0.5200 (0.0000) | 0.0044 (0.005)
érr(Yo,Ca) | 0.5200 (0.0000) | 0.0043 (0.005)
ae(C) 0.0000 (0.0000) | -0.0043 (0.005)
3 1 0

the prediction error of SVM after bagging does not change
from the value it had before bagging. Due to the fact that
errnn is zero, the bias equals érr(Ca). A zero value of
variance is a characteristic of a stable classifier. In the case
of 5-nearest neighbor, bagging degrades the performance of
this classifier.

4.2.2. Test phase

In the test phase we are only concerned with the prediction
error before and after bagging. The following steps were
executed:

1. Divide the initial set of images randomly into a train-
ing set of 50 images and a large test set comprised of re-
maining images. Train the SVM with this training set and
then apply the trained SVM on the test set.

2. Build B = 21 bootstrap replicas from the initial
training set. Train the SVM on each replica, thus obtaining
B classifiers.

3. Apply each of the B classifier on the test set and
aggregate those B classifiers for a final decision.

4. Repeat steps 1 - 3 for m = 60 times. Name this
experiment E1.

5. Repeat steps 1 - 3 for m = 20 times with a number
of bootstrap samples of B = 61. Name this experiment E2.
By averaging over the m iterations, we have err(C) and
err(Ca). The results for the two experiments E1 and E2
are summarized in Table 3 for three kernel functions. Notice
that the results are rates expressed in percentage.

Table 3: Average prediction errors (%) in the test phase for
face detection in AT & T face database.

Kernel err(C) | err(Ca) d
linear 4.87 4.48 1.09
E1 | polynomial 4.86 5.78 0.84
ERBF 2.93 3.04 0.96
linear 4.72 4.52 1.05
E2 | polynomial 5.03 5.67 0.89
ERBF 2.86 2.93 0.98

FromATable 3, one can see that, after many trials, on
average, ¢ is less than unity for the polynomial and ERBF
kernel functions, and exceeds unity by a small amount for
the linear kernel.

5. CONCLUSIONS

We have investigated the stability of SVMs in face detec-
tion conducted on the AT & T database by decomposing
its average prediction error into the bias, variance, and ag-
gregation effect terms and estimating the latter quantities
by means of leave-one-out bootstrap smoothing techniques.
Our effort was focused on the aggregation effect of SVM
that measures the excess of the average prediction error of
the standard SVM over the aggregated SVM (i.e., the clas-
sifier that results by training several SVMs on bootstrap
samples of the training set and combining their outputs by
uniform voting). If there were a significant gain when bag-
ging was applied, then the aggregation a:ﬁ\ect would be a
large positive quantity and the parameter § would be much
greater than one. We have demonstrated that this is not
the case, accordingly SVM is a stable classifier that is not
sensitive to variations of the training set. Since bagging is
a computationally intensive technique, even with small ac-
curacy improvement, this approach is not suitable for face
detection where real time processing is needed.

6. REFERENCES

[1] B. Efron and R. Tibshirani, An Introduction to the
Bootstrap, Chapman & Hall, New York, 1993.

[2] L. Breiman, “Bagging predictors,” Machine Learning,
vol. 24, pp. 123-140, 1996.

[3] L. Breiman, “Bias, variance and arcing classifiers,”
Technical Report 460, 1996.

[4] V.N. Vapnik, Statistical Learning Theory, J. Wiley,
N.Y., 1998.

[5] N. Cristianini and J. Shawe-Taylor, An Introduction
to Support Vector Machines, Cambridge University
Press, Cambridge, U.K., 2000.

[6] E. Osuna, R. Freund, and F. Girosi, “Training support
vector machines: an application to face detection,” in
Proc. IEEE Computer Society Conf. Computer Vision
and Pattern Recognition, pp. 130-136, 1997.

[7] A. Mohan, C. Papageorgiou, and T. Poggio,
“Example-based object detection in images by com-
ponents,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 4, pp. 349-361, April 2001.

[8] R. Tibshirani, “Bias, variance and prediction error for
classification rules,” Technical Report, 1996.

[9] T. Cover and P. Hart, “Nearest neighbor pattern clas-
sification,” IEEE Trans. Inform. Theory, pp. 21-27,
1967.

[10] J.K. Kung and T. Poggio, “Example-based learning
for view-based human face detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 20, no.
1, pp. 39-51, January 1998.

