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ABSTRACT — 1In this paper we propose
a Radial Basis Functions model for the mo-
tion field. This model is represented by means
of a two-layer neural network, where the hid-
den unit activation function is Gaussian. The
weights of the network are found based on ro-
bust estimators. Marginal median and median
of the absolute deviations are applied in order
to find the center and the covariance matrix of
the Gaussian function. We provide a fast im-
plementation of this algorithm based on data
histograms. The proposed method is applied
for motion field estimation and segmentation
in real images.

1 Introduction

Radial Basis Functions (RBF) networks have
been used as general functional estimators for
classification or signal modeling purposes. An
overview of different approaches in the RBF field
was provided in [2]. In this study the basis func-
tions are chosen to be Gaussian. Their centers,
covariance matrices and the weights associated
with the output connections are found by means
of a robust learning algorithm.

The evaluation of the network weights in our
approach is similar to the Learning Vector Quan-
tization (LVQ) algorithm [4]. The Gaussian cen-
ters to be estimated correspond to the local es-
timates for the first order statistics and the co-
variance matrix for the second order statistics.
However, the estimators based on classical statis-
tics produce bias whenever data are not normally
distributed [3]. In [6] it was proposed the Me-
dian LVQ algorithm and in [5] it was presented
a theoretical analysis for the robust estimation of
the RBF function parameters when estimating a
mixture of Gaussians. We employ median RBF
(MRBF) algorithm based on the marginal me-
dian estimator for finding the Gaussian centers
and median of the absolute deviations for the co-
variance matrix.

A motion estimation algorithm evaluates the
displacements of pixels or groups of pixels be-

tween two frames in an image sequence [1]. Mo-
tion segmentation algorithms identify the regions
having similar motion vectors. Block matching
algorithms largely used for motion estimation do
not always provide reliable optical flows. They
fail to give good estimates in the areas with al-
most constant intensity. After obtaining a first
estimate of the optical flow by means of block
matching algorithms, clustering methods can be
applied in order to segment the optical flow [7].

Usually the optical flows after clustering con-
tain some outlying vectors. In order to smooth ef-
ficiently the vector fields, the clusters are grouped
by means of the RBF net and the spurious vec-
tors are filtered out. Each moving region is as-
sociated to one motion vector. After the robust
learning stage, the network can infer the optical
flow and the segmentation for those frames con-
taining block sites that are statistically consistent
with the training set. We provide a fast imple-
mentation of the proposed algorithm based on the
optical flow histogram modeling.

2 Median RBF Learning

RBF neural network is a nonparametric classifi-
cation method which models a given input-output
mapping by a weighted sum of kernels:
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where Y} is the kth output of the network, L is
the number of hidden units and ¢;(X) is the ac-
tivation of the jth kernel function when the net-
work is presented with the X vector. Each kernel
function is activated in a region depending of its
parameters (network weights):
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where the kernels are assumed to be Gaussian
with the center u; and the covariance matrix is
;.
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RBFs are able to model very general functions
[2,4]. The success in applying a RBF network
depends on the estimation of the individual pa-
rameters corresponding to each basis function. A
two-stage learning algorithm is used for this pur-
pose. In the first stage the input to hidden layer
weights are estimated based on Learning Vector
Quantization (LVQ). In the second stage the out-
put weights are estimated.

In the LVQ algorithm we update only the cen-
ter p; which is the closest (in Euclidean distance)
to the given data sample:
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where n; is the number of patterns assigned to
the hidden unit j. For the covariance matrix cal-
culation the following formula can be used:
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for h,l = 1,...,N. N is the number of dimen-
sions for the input space. The estimators used in
(4,5) are derived from the classical statistics the-
ory. The output weights A(k, j) can be calculated
based on the backpropagation algorithm [2].

In the training stage it is desirable to avoid
using outlying patterns which may cause bias in
the estimation of the RBF network parameters.
The data samples which do not correspond to the
data statistics (noisy patterns) should be rejected
rather than used in the training stage. Marginal
median was proposed to be used for LVQ center
estimation [6]. The data samples are ordered and
the marginal median is assigned as class center:

ﬂ] = med {Xo,Xg,...,Xn_l} (6)
where X, is the last data sample assigned to
the cluster j according to (3). Marginal median
calculation is performed along each data dimen-
sion h, independently. Because this is applied in a
multidimensional space, the resulted center may
not be one of the given data samples.

After the center of a certain hidden unit j is
found according to (6), we use the median of
the absolute deviation (MAD) for calculating the
standard deviation:
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where 0.6745 is a scaling parameter in order to
make the estimator Fisher consistent for the nor-
mal distribution [3].

The cross-correlation factors of the covariance
matrix can be calculated based on the MAD es-
timator [3]. We consider two arrays containing
the difference and the sum for each two different
vector components of the data samples:

ZHh=X(h)+ X(1) (8)
Zi = X(h) - X(I). (9)

We compute first the median of these new popu-
lations as in (6). The squares of the MAD esti-
mates (7) for the arrays Z}, and Z;, consists of

their variances and they are denoted as Vj+hl and

Vj_hl' The cross-correlations are derived as:
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In [5] the theoretical asymptotic performance
was evaluated for both classical and robust statis-
tic based algorithms for estimating the parame-
ters of a mixture of Gaussians distribution. In the
case when the Gaussian distributions are far away
one from each other, the algorithms are expected
to provide similar results. The robust estima-
tors employed in the MRBF learning algorithm
gave lesser expected bias than classical estimators
when a certain overlap occurred among different
Gaussian components of the mixture [5].
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3 Fast implementation of the learning
algorithm

A histogram based median implementation algo-
rithm [8] was adapted in order to be applied for
MRBYF learning. The first data sample assigned
to a unit becomes the starting point in finding
the median. In the updating stage we take into
consideration pairs of two data samples X; and
X+1 assigned to the same hidden unit. We build
up the marginal histogram associated with each
hidden unit, denoted here as Hjj[k] where j is
the hidden unit, h is the dimension and k repre-
sents the level in the histogram. Let us denote
by ﬂ;h the median at instance ¢ and let us con-
sider X;(h) < X;41(h). Median updating can be
performed by the following rule according to the
rank of the incoming samples:

B it + K
It ﬂéh € (X;(h),X;41(h)) then K =0
It ﬂ;h < X;(h)then K >0

If %y > Xipa(h) then K <0

(11)



where K is the number of histogram levels neces-
sary to add or to substract in order to obtain the
median location. fi;;, is located where the data
marginal histogram splits in two parts containing
equal number of samples:
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where M represents the total number of levels
in the histogram. From this condition we obtain
the necessary number of levels K to get the new
location of the median.

We implement similarly a fast calculation for
the MAD estimator (7) by using the histogram
of data samples. In order to estimate the vari-
ance we can use the histograms obtained during
median calculation. From these histograms we
construct new histograms denoted as H;[k] and
representing the distributions for | X (h) — fi;(h)|:

H;n[0] = Hjn[fijn] (13)

Hjnlk] = Hjplijn + k] + Hjplign — k). (14)

The MAD represents the median for the data
contained in the H;[k] histogram and should ful-
fill a similar relationship with (12). Let us as-
sume ¥, be the value where the histogram H ;;[k]
splits in two parts containing equal number of
samples. The MAD of the distribution can be
derived according to this value, taking also into
account the quantization error:
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where the second term represents the compen-
sation for the quantization error. By means of
(12,15) the RBF network approximates the his-
togram associated to the optical flow. The learn-
ing starts with a given number of hidden units.
The hidden units which do not have associated a
certain number of data samples according to (3)
are discarded.

4 Simulation Results

Motion estimation and segmentation is an impor-
tant task for image sequence analysis and coding.
The block matching algorithms are frequently
used in the existing video coding systems for esti-
mating the optical flow. After applying the block
matching algorithm we get a first estimate of the
optical flow, and these motion vectors are used as
inputs in the neural network.

We have used for simulations the "Hamburg
taxi” sequence (Figure 1). This sequence rep-
resents three important moving objects: a taxi
turning around the corner, a car in the lower left
moving from left to right and a van in the lower
right moving from right to left. We have esti-
mated the optical flow, using the full search block
matching algorithm, assuming blocks of size 4 x 4.
The resulted optical flow is quite noisy as can be
seen from the Figure 3.

We consider as inputs the two-dimensional op-
tical flow provided by the block matching algo-
rithm. The estimated speed (in pixels/frames) for
the moving objects is provided in Table 1. The
reference velocity was calculated from the dis-
placements of the ”clear” features of each moving
object, obtained in a semiautomatic way. Both
networks have 8 hidden units. The learning times
corresponds to the learning of the Gaussian pa-
rameters and they were measured on a Silicon-
Graphics Indigo workstation. From the Table 1
it can be seen that the MRBF learning algorithm
provides better estimates for the optical flow and
requires lesser computation time than the algo-
rithm based on classical statistics (RBF).

Algorithm Taxi | Van | Car | Learning

Time (s)

RBF x| -5.3|-53| 5.6 0.22
y|-1.5]-15 ] 1.1

MRBF | x| -2 -6 6 0.15
y| -1 0 1

Reference | x | -2 -5 6 -

y| -1 0 1

Table 1: The speed estimation for the moving
objects from the "Hamburg taxi” sequence.

The optical flow smoothness was improved
when we have enlarged the input space to five di-
mensions. Besides the optical flow components
provided by the block matching algorithm we
consider as inputs the gray level and the geo-
metrical position for each block site. All these
input entries should be scaled properly, inside of
the same range. The values for the optical flow
were consistent with those provided in Table 1
and the segmentation of the moving objects was
accurate, as can be seen in Figure 2. The data
samples identified as outliers are eliminated from
the estimation procedure by means of the median
RBF. The segmented optical flow is represented
in Figure 4. The optical flow is well smoothed
inside of the segmented moving objects.



Figure 1: Frame from "Hamburg taxi” sequence.

Figure 2: The moving objects segmentation.

5 Conclusions

In this study we have applied a Radial Basis
Functions Network to model the optical flow. The
weights of the network are found by means of a
robust learning algorithm named Median RBF.
This algorithm is efficient in rejecting the out-
liers and is proven to estimate accurately the opti-
cal flow associated with different moving objects.
The moving objects are segmented according to
their optical flow. The information about the im-
age sequence contained in the network weights
can be further used for analysis and coding.
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