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Abstract

This paper presents a new learning algorithm for radial basis func-
tions (RBF) neural network, based on robust statistics. The extention
of the learning vector quantizer for second order statistics is one of the
classical approaches in estimating the parameters of a RBF model. The
paper provides a comparative study for these two algorithms regard-
ing their application in probability density function estimation. The
theoretical bias in estimating one-dimensional Gaussian functions are
derived. The efficiency of the algorithm is shown in modelling two-
dimensional functions.

1 Introduction

Radial basis function (RBF) neural networks have been used in different
applications in order to model unknown functions, providing the network
with a training set [4]-[8]. RBFs have suitable properties to be used for
function approximation [5], by decomposing a general function in a sum of
kernels [2]. All the functions in this structure have similar parameters and
can be embedded in a neural network.

The first approach considered in this paper is the second order statistics
extension [7] for Learning Vector Quantization (LVQ) algorithm [3]. However,
from statistical studies [2] this method is expected to give a large bias in the
cases when data are long tailed distributed or contain outliers [1, 9]. In order
to overcome these situations, we use an algorithm based on median type
learning and called Median RBF (MRBF). Robust estimators are known to
find the parameters best fitting to the bulk of the data and to identify outliers
[2]. In the MRBF learning algorithm, we use the marginal median estimator
in order to find the centers of the Gaussians and median of the absolute
deviation for the covariance matrix parameters.



The RBF network has a feed-forward topology and can be used in un-
supervised as well as in supervised learning. The network can be fed with
real N-dimensional vectors denoted by X and the hidden units implement a
Gaussian function:

5(X) = exp [~(u; — X)' X7 (; = X)), j=1,..., L (1)

L is the number of hidden units, p is the mean vector and ¥ is the covariance
matrix. These weights are associated with input to hidden layer connections
and geometrically they represent the centers and the shape parameters for the
basis functions. Each hidden unit has associated an activation region, similar
with the Voronoi partition from vector quantization. In order to assign a
new sample to an activation region we have assumed two different metrics:
Euclidean and Mahalanobis.
The output layer implements a weighted sum of hidden unit outputs:
L
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where M is the number of outputs.
The outputs are binary coded and a sigmoidal function is used in order
to limit the output:
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where Y* is the kth output of the network.
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2 Learning Algorithms

The weights in a RBF network can be found on-line by using a combined
unsupervised-supervised technique [4]. The unsupervised part is derived from
the LVQ algorithm and is similar to the adaptive k-means clustering.

In the first stage, the algorithm computes the distances from the given
pattern to all the existing kernel centers. If we use Euclidean distance:

L
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where Cj is the kernel associated with the given pattern. Only the center of
the winner class will be updated, according to the LVQ algorithm [3]:

. . 1 .
fj = fij + — (X; — i) (5)
nj
for j = 1,..., L, where n; is the number of samples assigned to the cluster
j- Taking the learning rate equal with the inverse of the number of samples
associated with that unit we obtain a minimal output variance [10].



A similar method with (5) can be used to calculate the covariance matrix
elements for each Gaussian neuron [7]:

nj =2, (X)) = (D)Xl — (k)
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ikl = (6)
for k,{=1,...,N j=1,...,L. The estimators in (5,6) are consistent with
the classical statistical estimators for the first and the second order statistics.

The Mahalanobis square distance takes into consideration the covariance
matrix for each hidden unit and can be used instead of (4):
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In the training stage it is desirable to avoid using patterns which may cause
bias in the parameter estimation. The LVQ algorithm together with its ex-
tention in RBF network do not have robustness against the outliers or against
the erroneous choices for the parameters. Robust estimators are known to
provide accurate estimates when data are contaminated with outliers or have
long-tailed distributions [1, 2]. The marginal median LVQ algorithm [9] can
be used in order to evaluate the reference vectors for each partition region. In
order to avoid increasing complexity, the samples assigned to a neuron pass
through a running window W. If the data statistics change in time, then W
is small. If a better evaluation of the median is desired then W is large. The
learning rule is given by:

P med{Xo,Xl,...,Xi} ifi<W (8)
Hi = med{Xi_W,Xi_W+1,...,Xi} leZW

For the robust estimation of the scale parameter we use the median of the
absolute deviation (MAD):

. med {| Xy — g;|, ..., | Xw — 5]}
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where 0.6745 is a scaling factor in order to make the estimator consistent
for the normal distribution [1, 2]. The cross-correlation components of the
covariance matrix can be derived from the MAD calculated for X;(h) 4+ X;({)
and X;(h) — X;(1) [2].

In both algorithms, for supervised learning, a second layer it is used in
order to group the clusters found in the unsupervised stage. The output
weights are updated as:

Ak, §) = Ak, 5) + 1 (YH(X) = FRXO)YFO(1 - YRX))6; (X)) (10)

fork=1,...,M j=1,...,L and 5 € (0,1) is the learning rate. F*(X) is
the desired output for the pattern X and it is binary coded. The formula
(10) corresponds to the backpropagation for RBF network with respect to
the square error cost function [8].



3 The Performance Analysis

We consider the case when we have a mixture of one-dimensional normal
functions N(y;,0;):

f(X) = Z \/5_;0-, exp [_ (XQ—U,;J') ] (11)

J
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where ¢; is the a priori probability for the function j. In the case of a

mixture of multivariate normal distributions, the estimation can be done on

marginal data. If we consider more complex distribution functions, they can

be decomposed in sums of mixed Gaussians and reduced to the model (11).
We estimate the center for the jth Gaussian:

o S XFX)dX
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where T] and Tj+1 are the estimates of the separating boundaries for the
Jth Gaussian kernel and f(X) is given by (11). In order to evaluate the
parameters for one Gaussian from a mixture of normal functions we should
also consider parts from neighboring functions which are inside the boundaries
Tj and Tj+1~ Replacing (11) in (13) we derive the stationary value of the mean
estimate, valid for (5).

The median is located where the pdf of the given data is split in two equal
areas [1]. From this condition the stationary value of the center estimate for
the jth Gaussian distribution can be obtained by using the median operation:
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where we consider the definition for the erf function:

erf(X) = \/% /OX exp (-%) dt (15)

The stationary value for the estimate of the variance using the classical
estimator (6) is given by:
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where f(X) is from (11) and E[a]***"] is the stationary value of the center
estimate using the mean estimator.
From similar properties like those used for (14), for the MAD estimator

(9) we can derive its expected stationary value from:

~med ~MAD ~med ~MAD
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where ¢=0.6745.

In order to evaluate the parameters for the Gaussian kernels we must also
evaluate the activation domains V = [T] , Tﬂ.l) for each Gaussian function. If
the Euclidean distance is used in order to assign a new pattern to an activation
region (4), we can estimate the boundary TJ between two activation regions
jand j+ 1 as:

T = % (18)
for j = 1,...,L — 1. The first and the last boundaries are: Ty = —oo and
TL = Q.

In the case when the Euclidean distance is replaced by the Mahalanobis
distance (7), then the boundary condition in one-dimensional case can be
found solving the equation:

~ 2 ~ 2
j} —Hj — j} — Hj+1 (19)
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for j = 1,..., L — 1. Analytical methods can be used in order to find the
boundaries as well as the model parameters.
We consider the following particular examples :

F(X) = %N(5, o)+ %N(m, o) (20)
FX) = %N(i’), o) + %N(5, o) + %N(lo, o) (21)

We estimate the center and the scale parameter for the distribution N (5, o)
using both mean and median estimators for RBF centers. The absolute errors
E[i]—p are depicted in Figure la for the distribution (20) and in Figure 1b for
the distribution (21) with respect to the scale parameter o. The comparison
results in the bias estimation for the scale parameter E[6]—o are presented in
Figure lc for the distribution (20) and in Figure 1d for the distribution (21).
The estimation of the class means and scale parameters of (20) corresponds
to the estimation of parameters of medium-tailed distribution and in the case
of (21) to a short tailed distribution. All these plots show that in the cases
when it is occuring a certain overlap in the functions to be estimated, the
bias given by the robust algorithm it is smaller than that obtained by using
classical methods.
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Figure 1: Theoretical analysis for robust and classical statistics estimators in
evaluating the RBF parameters: a) estimation of the center for N(5,2) in a
long-tailed distribution and b) in a short-tailed distribution; ¢) estimation of
the scale parameter for N(5,2) in the first distribution and d) for the second
distribution.

4 Simulation results

We have applied both algorithms presented in Section 2 and analyzed in
Section 3 to the estimation of the parameters for mixed bivariate normal dis-
tributions. The first algorithm uses classical statistics estimators for finding
the RBF parameters and the second uses robust estimators. In these appli-
cations we have used both Euclidean and Mahalanobis distances in order to
assign a new coming pattern to a cluster.
We apply the networks for estimating the following distributions:
Distribution I: P{(X)=N(2,1;3,1;0)+N(8,7;3,1;0)
PI(X)=N(8,2;1,3;0)+N(2,6;1,3;0)
Distribution I1: P{f(X)=N(6,0;4,1;0)+N(0,6;1,4;0)
PH(X)=N(6,6;2,2;0)
Distribution II: P/(X)=e¢ P/ +(1-¢)U([-5,15],[-5,15])
Distribution IV: P{V(X)=¢ P/ +(1-€)U([-5,15],[-5,15])
where we denote a Gaussian distribution through N(p1, pa; 01, 02;7), 7 is
the correlation factor and a uniform distribution through U and k£ € {1, 2},
e=109.



Table 1: Comparison between RBF and MRBF algorithms

Distance Measures

Distribution | Method Euclidean Mahalanobis
Error (%) | MSE | Error (%) | MSE
RBF 21.26 | 13.69 17.17 | 6.90
I MRBF 17.58 8.65 13.75 2.75
Optimal 12.13 0.00 12.13 0.00
RBF 3.89 3.69 2.95 1.24
11 MRBF 2.90 1.20 2.61 0.82
Optimal 2.52 0.00 2.52 0.00
RBF 26.63 | 34.22 35.05 | 48.59
111 MRBF 21.11 | 10.11 18.82 5.74
Optimal 15.78 0.00 15.78 0.00
RBF 15.28 | 32.36 22.21 | 39.61
v MRBF 8.78 5.50 7.24 | 2.49
Optimal 7.18 0.00 7.18 0.00

The comparison measures are the miss-classification error and mean square
error (MSE) between the true functions and those modeled by means of the
neural network. The problem of multi-distribution estimation is seen as a
pattern classification task. The optimal network is obtained when its param-
eters are identical to those of the given Gaussian distributions. The MSE is

defined as:

MSE = % ; /D(Yk(X) —YH(X))?dX (22)

where the domain is D = (—00,00) x (—00,00) in our case , Yk(X) is the
surface for the kth output unit and Y*(X) is the target function.

In the learning stage, we consider a window of W=401 samples (8) (for
MRBF) and 4000 learning samples with equal number of samples for each
cluster. The comparison results between the two methods are given in Table
1 where the same data were used for both algorithms. The simulations were
repeated with different data, consistent with the same distribution functions
and the presented results are the average of all these trials.

In all these cases, we have obtained a clear improvement by using the
MRBF algorithm. When the mixture of bivariate normal distributions is
contaminated with uniform distributed patterns the difference is very large
because the median type learning is insensitive to the presence of outliers.
Using the Mahalanobis distance instead of the Euclidean distance, we ob-
tain better results, except for the classical estimators in the case of models
contaminated by uniform noise.
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Figure 2: Samples from the distribution I and the boundaries between the
classes: ’-” optimal classifier, - - MRBF and ’--> RBF.
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Figure 3: Samples from the distribution II and the boundaries between the
classes: ’-” optimal classifier, - -* MRBF and ’--> RBF.



Samples drawn from the distributions I and II are depicted in Figures 2
and 3. The separation boundaries found by means of the RBF and MRBF
networks as well as the optimal boundary are marked in these Figures. The
separation boundaries are situated where two neighboring classes have equal
probabilities. The decision rule for the assignment of a new pattern was based
on Euclidean distance in Figure 2 and on Mahalanobis distance in Figure 3.
It can be seen from these Figures that we obtain a better approximation of
the optimal boundary by using MRBF compared with the classical algorithm.

In Figure 4 we evaluate the convergence of these algorithms in the case
of distribution I. The learning curves represent the estimation of the pdf
functions (MSE) with respect to the number of samples. From this plot the
improvement given by MRBF compared with classical RBF learning and by
using the Mahalanobis distance instead of the Euclidean distance is clear.

From the Table 1 we can see that MRBF gives better results in estimating
the pdf functions and it is not biased by the presence of the outliers. MRBF
gives more accurate approximations for the Bayesian boundaries then the
classical statistical algorithms in the case of bivariate mixtures of Gaussians,
as can be seen in Figures 2, 3. Median type learning applied to radial basis
functions converge smoothly to a stationary value smaller than that obtained
in classical estimation for RBF as can be seen in Figure 3.
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Figure 4: The learning curves in the case when the samples are drawn from
the distribution I. Classical estimators are used together with the Euclidean
distance for curve a and together with the Mahalanobis distance for curve c ;
robust estimators are used together with the Euclidean distance for curve b
and together with the Mahalanobis distance for curve d.



5 Conclusions

This paper presents a comparative study of two learning algorithms, one
based on classical statistics estimators and the other on robust estimators.
The algorithm derived from robust statistics and called Median RBF uses the
median in order to find the centers in the network and median of absolute
deviations for the estimation of the scale parameters. Both algorithms can
be implemented on-line. We have derived theoretical analysis in a parameter
estimation problem. The algorithm based on robust statistics is proved to
give more accurate results in the one-dimensional estimation problem as well
as in a two dimensional density function approximation. Possible fields of
application for this algorithm are in communication systems, image processing
and speech recognition.
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