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Abstract— Various approaches were suggested for si-
multaneous optical flow estimation and segmentation
in image sequences. In this study, the moving scene is
decomposed in different regions with respect to their
motion, by means of a pattern recognition scheme.
The inputs of the proposed scheme are the feature
vectors representing still image and motion informa-
tion. The classifier employed is the Median Radial
Basis Function (MRBF) neural network. Each class
corresponds to a moving object. An error criterion
function derived from the probability estimation the-
ory and related to the moving scene model is used
as cost function. Marginal median and median of the
absolute deviations estimators are employed for esti-
mating the basis function parameters.

I. INTRODUCTION

Motion representation and modeling is an important
step towards dynamic image understanding. Many of
the algorithms proposed for joint estimation of the op-
tical flow and moving object segmentation depend on the
choice of various parameters. Mainly iterative algorithms
are used, employing stochastic or deterministic processing
that lead to the minimization of a cost function [1].

In this study, a cost function associated with the min-
imization of a global criterion is proposed for simulta-
neous estimation of the optical flow and segmentation
of the moving objects. The image is first partitioned in
block sites situated on a rectangular lattice. Each block
site is associated with a five dimensional feature vector
describing the position, the gray level and the local mo-
tion information. The proposed method is based on the
unsupervised classification of the feature vectors by con-
sidering the displaced frame difference as well. The clas-
sification is done according to a decision criterion derived
from the Bayesian theory [2] and representing a metric in
the parameter space.

A radial basis functions (RBF’s) decomposition is
known to be a good functional approximator and has
been used in many applications. The first layer units
implement Gaussian functions and the output units are
assigned to the moving objects. The classification crite-
rion connects the Gaussian parameters to the set of fea-
ture vectors drawn from the image sequence. Each basis
function has associated a moving region. The moving re-
gions are connected by the output units in order to model
moving objects. We consider the MRBF network [3] for
modeling the optical flow and moving object segmenta-
tion from the image sequence. The efficiency of the pro-
posed algorithm when compared to the classical learning

algorithm in RBF networks has been shown in [3].

II. THE CLASSIFICATION CRITERION

We consider the video frame partitioned in blocks situ-
ated on a rectangular grid. We associate a feature vector,
describing the local image sequence properties, to each
block site. This vector contains a still image feature vec-
tor S;y; and a motion vector My :

ury = [S17, Mr,]. (1)

The still image feature vector includes the block site co-
ordinates and its mean gray level :

Siy=1[,J,115], (2)

and the motion vector contains two components, corre-
sponding to the local motion of the block :

Mi; = [ma, 15, my,15). (3)

They can be calculated by any optical flow algorithm,
e.g., by block matching. The motion vector that mini-
mizes the displaced frame difference is chosen [1].

A moving scene can be seen as made up of regions with
different motion parameters. We assume that each frame
can be segmented into L subsets, forming moving regions,
denoted as Xi,...,Xr. The moving objects are consid-
ered as compact moving entities, consisting of one or more
moving regions. Each moving object is assigned to a class.
Each subset Xj has associated a five-dimensional repre-
sentative vector ug, describing the optical flow and the
segmentation information of a certain moving region :

we = [Sk, Mk]. (4)

The still image feature vector Sy is directly related to the
segmentation label of the moving region k.

Let us denote by Sk the lebel estimate of the moving
region k and by My, the estimate of the optical flow asso-
ciated with the same moving region. A block site By is
considered as belonging to a moving region k, Bry € X,
if it maximizes the a posterior: probability of the optical
flow M; and moving region segmentation Sy joint esti-
mation, denoted as P(Mk,$k|ft_1, ft), when compared
with the probabilities associated to the other moving re-
gions :

P(Mk,3k|ft—1,ft)>P(MJ,«§J|ft—1aft) (5)

fory=1,...,L, y #k, where L is the number of moving
regions.



The moving regions are merged based on a neighbor-
ing criterion in order to describe moving objects. Let us
denote by 7% the estimate of the optical flow and seg-
mentation label associated with a moving object. We
consider a neighboring measure V(Xl,Xk) between two
subsets representing two moving regions, X; and Xy :

Z N0 X (6)

BrjeXp

VX1, Xk) = V(Xg, X)) =

where |N]J N Xk| represents the number of block sites of
a moving region Xy, situated in a certain neighborhood
N7 of the block site By, from the moving region X; [4].
This measure expresses the boundary length between two
moving regions. If two moving regions X and X; do not
have any common boundary, then V(X;, Xi) = 0. We
define a moving region as a moving object if it contains
a compact area in the image. In this case, the proba-
bility of estimating the optical flow and moving object
segmentation P(’j}|ft_1, fi)is :

V(Xk, Xi) = maxZ V(Xk, X;) then
P(Tk|feca, fr) = P(Mx, Sk|fioa, o). (7

A moving object k contains a moving region X, if X; has
the maximal neighborhood measure (6) with Xy :

V(Xy, Xx) = maxic; V(Xi, X;) then
P(Tx|feor, fi) = M P(My, Sk|fee1, fo) +

+)\ZP(A;(la$l|ft—laft) (8)
where Ay, A; are the parameters weighting the contri-
bution of each moving region probability to the moving
object probability. This condition can be extended for
moving objects containing many moving regions.

Let us express the a posteriori probabilities from (5)
with respect to the features extracted from the image
sequence. After applying the Bayes rule, each of the a
posteriori distributions in (5) can be factored as follows :

Y S P MG, S5)P(M; ,S
P(Mj,S |.ft,f:—1) (felfi—1 ng,|f1 (1) 7 | fe— 1)

_ P(ftlfi—1,M;,S)P(M;1S;, f1-1) P(S5 | fo— 1)
- P(ftlfi—1)

()

where P(3J|ft_1) represents the a priori probability of
the segmentation and P(/\;(]|$], fi—1) is the probability
of the optical flow estimation depending on the segmen-
tation and image [2].

Each of the above conditional probabilities can be ex-
pressed as an energy functional :

1 E(X)
)=z [‘T]

where Z is a normalizing constant and f is a constant
controlling the properties of E(X). The probability esti-
mation problem (5) is converted into the minimization of
an energy functional :

(10)

E; = E(ft|ff—1’MJ’3J) + E(MJ|3J’ft—1) +E($‘J|ft(—l))~
11

In order to minimize E;, all three components should be
simultaneously minimized. This corresponds to the opti-
cal flow and image sequence segmentation map simulta-
neous processing.

A performance criterion is related to the total squared
error minimization in the feature space [5]. The energy
functional in (11) can be expressed as a clustering metric
in the feature space. This metric relates the moving re-
gion feature vectors (4) to the block site feature vectors
(1). o

The energy E(ft|ft—1, M;,S;)in (11) is represented as
a weighted function of the displaced frame difference, de-
noted as WDFD(M;) and corresponding to the moving
object j:

nge—1 ny—1
WDFD(M;) = > Z [wr s (M;)dr(M;)]
=, ,ex°

(12)
where d]](./\;(]) is the DF D estimate for the motion vec-
tor /\;(] and 'wU(./\;(]) is a weighting factor correspond-
ing to the block Br; and depending on the motion vector
M]. We consider as weighting factor a reliability coeffi-
cient which measures the confidence on the output of the
block matching result :

- d1 (M
’LUJJ(MJ): - SyIJ( J) (13)
2 =2
S Y s
k:—STle_i_y

where S; xSy is the search region for the block matching
algorithm. This coefficient is small when we have a good
matching and large in the case of poor matching.

The energy functional E(M;|S;, fi—1) in (11) is asso-
ciated with motion vector clustering :

ng—1 ny—l
E(MJ|$]aft—1): E E (MI]_M]) (Mz,—
I=0 J=0
—M;) BrjEX;

(14)

The cost function associated to the moving region seg-

mentation E(S;|fi—1) is related to vector clustering with

respect to their gray level, and their geometrical proxim-
ity :

ng—1 ny—1
E@S|fe)= ) Z (817~ 8)7(S15 = ).
5, e

(15)
By replacing the expressions (12), (14) and (15) in (11)
we obtain the energy associated with the moving region

7

ne—1 ny—1
Ey(ur)= Y Z (urs— ;)" (ars — i)+
I=0
+WDFD(M;) Brsex;

(16)
where WD F D(M,) is provided in (12).



III. MEDIAN RADIAL Basis FUNCTION NETWORK

The cost function (16) corresponds to image partition
in moving regions. If we take into account the covariance
matrix and we express (16) as an unnormalized proba-
bility (10), we obtain a so called radial basis function

(RBF) :
¢;(u) = exp [—(u - ﬂJ)Ti:;l(u = i) — WDFD(MJ)] )
(17)

where f@; is the center vector and ﬁ]] is the covari-
ance matrix. Each basis function must be defined such
that it maximizes the probability of the optical flow es-
timation and segmentation of a certain moving region
P(My, Sk|fe, fr—1).

The output layer implements a weighted sum of hidden
unit outputs, scaled to the interval (0,1) by a sigmoidal
function :

1
Yi(urs) = < (18)
1+ exp _ZAM(ZS] (11]])
j=1
for k =1,..., N, where Ax; is the parameter associated to

the connection between the hidden unit 7 and the output
unit k£, L is the number of basis functions, N is the num-
ber of moving objects and ¢;(urs) is provided in (17).
The a posterior: probability of optical flow estimation
and segmentation associated to each moving object 7%,
is modeled by the output unit. The moving object prob-
abilities estimation leads to finding the optical flow and
segmentation map of the image sequence.

The structure of the network used for modeling the
motion is represented in Fig. 1. A robust statistics-based
training algorithm called Median Radial Basis Function
(MRBF) is proposed in [3] for estimating the RBF net-
work parameters. The basis function center updating
is based on the marginal median LVQ algorithm. The
marginal median LVQ algorithm orders the data samples
associated to a center, on each dimension separately, and
takes the median of the data as the new estimate for the
center :

(19)

where uy,_1 i1s the last data sample assigned to the basis
function k, based on a minimal function E; in (16). The
median of the absolute deviations (MAD) estimator is
used as a robust estimator for calculating the dispersion
parameter :

[Lk = med {110,111,...,up_1}

med {|wo — fnl, ..., [up—1 — jix|}
0.6745

(20)

Ty =

where ©, denotes the diagonal vector of the covariance
matrix ﬁ]k and 0.6745 is the scale parameter in order
to make the estimator Fisher consistent for the normal
distribution. A fast implementation algorithm for (19,
20) based on data sample histogram modeling is provided
in [3].
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Fig. 1. The MRBF network structure for moving scene model-
ing: I and J are the position coordinates features assigned
to a block site, [ is the gray level and my, my are the mo-
tion vector components provided by the block matching
algorithm.

By estimating the radial basis functions, the image is
split in moving regions. A block site is assigned to that
moving region corresponding to the most activated radial
basis function. For each two moving regions we evalu-
ate the boundary measure (6) between them, assuming a
four block site neighborhood system. The moving regions
which have a high interconectivity among their compo-
nent block sites are considered as moving objects (7) and
the other regions are merged according to (8) in order
to represent moving objects. For each moving object is
assigned an output unit. The block sites assigned to the
moving regions are labeled according to (7) or (8). The
labels are considered as targets for the backprogation al-
gorithm, in order to estimate the Ap; weights. These
parameters smooth the connection regions among the pa-
rameter areas associated with the same moving object.

After the training stage is completed, when providing
a feature vector (1), the maximum activated output will
show the corresponding moving object. This procedure
leads to the partition of the image sequence in moving ob-
jects. The network can be applied in other frames from
the same image sequence, if their optical flow estimation
and segmentation probabilities are consistent with those
of the frames used in the training stage. It also can be
used in a multiresolution (hierarchical) representation of
the image. Let us consider that the network was trained
on a certain image partition and afterwards we input fea-
ture vectors from a different block size partition. If the
block size is large, the feature vector number is small and
the training time will be short, but the segmentation will



provide rough boundaries. The network can be trained
with features corresponding to big blocks and afterwards
applied on an image partition in blocks of smaller size.

IV. SIMULATION RESULTS

The MRBF network was tested on various image se-
quences [6]. In Fig. 2 (a) a frame from the “Trevor
White” sequence is shown. The optical flow provided
by the full search block matching algorithm when consid-
ering 8 x 8 blocks, is shown in Fig. 2 (b). The feature
vectors are drawn from the second and seventh frames
of this sequence. After evaluating the cost function with
respect to the feature vectors according to the procedure
described in Section II, the learning algorithm described
in Section III is used for estimating the parameters of the
MRBF network. The segmented moving objects and the
optical flow smoothed by the MRBF network are shown
in Figs. 2 (c) and (d). For comparison purposes, the mov-
ing object segmentation and the optical flow provided by
ICM [7], [8] for the same image sequence are shown in
Figs. 2 (e) and (f).

The MRBF network processes entire image regions as-
signed to the same moving object and exploits the inter-
dependency among their block sites. The MRBF network
provides smooth and accurate optical flows. The feature
extraction and MRBF training time when using the al-
gorithm described in [3] for this example is 23.4 seconds
on a Silicon Graphics Indy Workstation. However, the
trained network can be applied on frames whose optical
flow and moving object probability is consistent with that
obtained in the training stage and the average time per
frame is lower in this case. The total number of necessary
parameters for the MRBF network is (10 + N)L, where
L is the number of hidden units and N that of outputs.
The MRBF network requires 112 parameters instead of
3072 parameters used by the ICM algorithm, for repre-
senting the moving scene in the “Trevor White” frame for
the assumed block partition.

V. CONCLUSIONS

This study analyses the MRBF neural network when
used for modeling the optical flow estimation and moving
object segmentation. For segmenting the moving scene
we employ a mixture of kernel functions whose param-
eters are found by training. The criterion for segment-
ing the moving objects is derived from the a posterior:
probability maximization criterion. Consequently, a cost
function is obtained and used as a feature space met-
ric in the learning stage. The cost function takes into
account the local motion information, the gray level or
color components, the geometrical proximity and consid-
ers the displaced frame difference as well. For estimating
the hidden unit parameters, a robust unsupervised train-
ing algorithm is employed. The hidden units are fed into
the output units, each of them associated to a moving
object. The moving region areas found in the first learn-
ing stage are merged, based on a compactness measure,
forming moving objects. The optical flow provided by the
proposed algorithm proved to be accurate and smooth.
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(a) A frame from the “Trevor White” sequence; (b)
The optical flow produced by the full search block match-
ing algorithm; (c) The moving object segmentation pro-
vided by the MRBF; (d) The optical flow smoothed by
the MRBF; (e) The moving object segmentation provided
by the ICM; (f) The optical flow smoothed by the ICM.
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