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Abstract

The image sequence is represented as a set of mov-
ing regions which make up moving objects. Motion,
position and graylevel (or color) information is used
for segmenting the moving objects. A criterion is pro-
posed for modeling the 3-D motion and segmentation.
After identifying the occluding regions, the moving ob-
jects are tracked over the mext frames. Prediction is
employed for estimating the future moving object po-
sition and its optical flow.

1 Introduction

Various approaches have been proposed for opti-
cal flow estimation and motion segmentation [1]. The
maximization of the a posteriori probability has been
considered in [2]. A classification approach was pro-
posed for jointly segmenting the moving objects and
their corresponding optical flow in [3]. Median Radial
Basis Function (MRBF) algorithm which relies on ro-
bust statistics was employed for estimating the moving
object characteristic vectors [3].

We provide a classification based criterion for the
3-D segmentation of the image sequence. After esti-
mating the boundaries of the moving objects and their
corresponding optical flow in 2-D we want to see how
they change over the next frames [1]. Tracking algo-
rithms are usually employed for estimating the moving
object position in the following frames [4, 5|. Cer-
tain regions do not have a clear match in the previous
frame [1, 4]. After finding the undetermined regions,
their component pixels are classified by means of the
already trained MRBF network. Consequently, the
moving objects are matched from one frame to the
next one. After estimating the 3-D description of the
moving sequence, we can derive a prediction model.
This model assumes that object velocity depends on
the velocities of the same moving object in the pre-

vious frames. The predicted image, is compared with
the real frame (if it is available) in order to certify the
accuracy of the 3-D model.

2 Spatio-temporal motion and seg-
mentation estimation

An image sequence f(t),t=1,...,K is composed
of a set of moving regions {X;(¢),i = 1,..., N} with
the properties :

£(t) = U, Xi() (1)
X5(t) N X(t) = 0,5 # k (2)

Each subset Xj(t) is associated to a five-dimensional
representative vector ur = [Sk, Mg], describing the
optical flow M}, and segmentation information Sy as-
sociated with a certain moving region. The still im-
age feature vector Sy contains the location and the
characteristic graylevel. Sy is directly related to the
segmentation label of the moving region k while M
represents the velocity of the respective moving region.
The classification in moving regions is done according
to the Bayesian theory :

P(ix(t),t=1,...,K —1|f(t),t=1,...,K) >
P(;(t),t=1,...,K —1|f(t),t =1,...,K). (3)
After applying the Bayes theorem and expressing the

probabilities from one frame with respect to the pre-
vious frames, we obtain :
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The first probability in the derived expression is asso-
ciated with the reconstruction of a frame based on the
previous ¢t — 1 frames and their correspondent feature
vectors. The second probability is associated with the
dependence of the feature vector at the moment ¢t — 1
with respect to the values of the same feature vector
at the previous moments. This probability represents
the tracking of the feature vectors over several frames.
The third probability models the moving object char-
acteristics evaluated in the first p frames. The denom-
inator represents the dependency of a certain frame on
the previous ones and can be neglected.

The image is split in blocks and a feature vector
denoted as uyy containing the location, the graylevel
and the motion vector is associated with each block
at site (I,J). The third probability from (4), when
considering p = 2, can be further decomposed :

P(M;, 81 £(t), f(t — 1)) = P(£(£)|M;, 85, f(t — 1))

P(M;|8;, f(t —1)P(8;| f(t - 1))
P(f(®)If(t—1))

where P(S;|f(t — 1)) represents the a priori probabil-
ity of the segmentation and P(M;|S;, f(t — 1)) is the
probability of the optical flow estimation depending on
the segmentation map and image [2]. After expressing
each probability as an energy function, we model these
probabilities with Gaussian functions. The Gaussian
function associated with a moving region and imple-
mented by a hidden unit of the RBF network is :

d),-(uu) — exp [—(uu — ﬂj)Tﬁijfl(uU — ﬂ])

—WDFD(M,-)} (6)

where [i; and f)j are the estimates of the center vec-
tor and covariance matrix of the Gaussian function
and WDFD(MJ-) represents the weighted displaced
frame difference - a measure of confidence in the mo-
tion estimation algorithm [3]. The output layer func-
tion consists of a weighted sum of hidden-unit outputs,
scaled to the interval (0,1) by a sigmoidal function :

1
Yi(urs) = 7 (7)
1+ exp I:_Ejzl)‘qusj(uf.])}
for k = 1,...,N, where \; is the parameter asso-

ciated to the connection between the hidden unit j
and the output unit k, L is the number of basis func-
tions and N is the number of moving objects. The
training of the basis function parameters is done us-
ing an outlier rejection algorithm based on the MRBF

()

algorithm [3]. The number of moving objects is not
known apriori and is determined according to a com-
pactness criterion. The output units associate moving
regions with their corresponding moving objects. The
training algorithm is unsupervised and provides an es-
Fiﬁnate for P(ﬂk(]),] =1,...,p— 1|f(.7)a.7 =1,... ap)
3].

3 Tracking the moving objects

A component of the first product in the decom-
position from (4) represents the reconstitution of the
current frame based on the previous image segmenta-
tion. For p = 2 we can express this probability as an
energy function measuring the accuracy of displacing
the moving regions according to their movement :

P(F(8)ln(t ~ 1), /(¢ — 1)) =
exp[-|UY (Xilt — D © Mt~ 1) - 10l (§)

where X;(t — 1) @ M;(t — 1) represents the transla-
tion of the moving region X;(¢ — 1), obtained from the
segmentation of the frame f(¢ — 1), with the motion
vector M;(t—1). The maximization of this probability
represents the minimization of the difference between
the given frame and the frame reconstructed based on
the previous frame, its segmentation and correspon-
dent optical flow. It can be observed that by displac-
ing each individual object ¢ = 1,..., N, from f(¢t — 1)
(8), certain regions have uncertain assignment. The
condition from (1) is not any more respected when re-
gions from one frame do not have a correspondent in
the next frame (uncovered regions) and (2) is not val-
idated when two different objects project in the same
region of the next frame (occluding regions). Both sit-
uations occur in the regions from the margins of the
objects. After detecting these particular regions we
extract their correspondent feature vectors uyy asso-
ciated to their location, graylevel and displacement.
The trained MRBF network, can be used at the pixel
resolution in a multiresolution approach [3]. We apply
the already trained MRBF network only in the regions
decided as uncertain according to (8).

The components of the second product of the ex-
pression (4) representing the dependency of a feature
vector on the values of the same future vector in the
previous frames, can be expressed as an energy func-
tion :

P(ia(t — 1)|ax(d), £G)rd = 1, t =2, f(t — 1))
= exp[—(fu(t — 1) — S/L, Wit (iw))]  (9)

where (fix) are a set of functions modeling the vari-
ation of the k-th object feature vector in time and



W} are their associated weights. RBF functions, simi-
lar with that from (6) but having as inputs the feature
vectors at various time intervals, can be used for mod-
eling complex variations as those produced by chaotic
time series and they can be employed in the place of
¥(fix) as well. However, in most of the cases, moving
objects have smooth motion, which can be modeled
by a linear system. In this case, the model (9) can be
simplified :

Pkt — V)i (5), £G)yd = 1y- .-, t =2, f(t — 1))
= exp|—(fu (t — 1) — W, 7)) (10)

where W, is a matrix of size M X 5 whose entries rep-
resent the dependency of a feature vector component
at time ¢t — 1 with respect to its values in the pre-
vious M frames. The features that are tracked over
the frames correspond to the position of the object,
their graylevel (representing changes in luminance)
and their associated optical flow. The relationship
(10) can be generalized for tracking the characteristics
of a feature vector entry with respect to all its entries
in the previous frames. The components of the matrix
W, can be found by using the Least Mean Squares
(LMS) algorithm [6]. LMS algorithm can ensure the
tracking of the feature points over several frames and
has been used successfully in many applications. The
change in the moving object representative vectors are
reflected in the segmentation of the moving objects.
In order to maximize the probability in (4), we should
maximize simultaneously (5,8,10). The relationship
(5) provides the initial estimate, while (10) provides
an estimate of the feature vectors based on their pre-
vious values, which must be also consistent with an
accurate frame reconstruction (8).

4 Prediction of a future frame

A prediction function provides an estimate of the
moving object segmentation and optical flow estima-
tion in a future frame based on the data extracted
from the previous frames. A prediction function can
be determined from a relationship similar to (10). Let
us denote by (X (t+ 1)) and m:(Mp(t)) the predic-
tion of the moving region X; segmentation and of its
motion vector from the frame ¢ into the frame ¢ 4 1.
The prediction function for the motion vector can be
expressed based on the matrix W, derived from the
maximization of the probability from (10). We neglect
the dependency of the motion on the other feature
vector entries. The optical flow prediction of a certain
object is found in each consecutive frame as :

7"'t('/\;tle:,at(t)) = Wmka,m + Wyka,y (11)

Te(Miey(t) = Way My o + Wyy My, (12)

where Mz,k, Mk,y represent the motion vectors on z
and y directions associated with the k-th moving ob-
ject for the last M frames and W, W, W, W,
are their corresponding weighting vectors as found by
the LMS algorithm. This prediction function can eas-
ily model complex movements such as rotation and
acceleration. The number of frames M to be taken
into account for the prediction system must be larger
when the motion is smooth and smaller when the mo-
tion is fast changing. Similarly with the relationship
(11) or (12) we can derive a prediction system for the
change in the luminance by tracking the change in the
average graylevel of a certain moving object.

The location of a moving object in a future frame
is given by the segmentation in the actual frame and
the prediction of its associated optical flow :

me(X(t +1)) = Xu(t) @ (Mi(t))  (13)

where we consider the displacement for all the pixels
composing the moving object k, and where 7, (M (t))
components are derived in (11,12). Given a prediction
function for the optical flow associated with the mov-
ing object k we can predict the frame £+ 1 considering
the segmentation of the individual objects :

gt +1) = Uil m (X (t + 1)) (14)

where g(t + 1) is the predicted image. As was shown
in the previous Section, certain regions do not have
a clear assignment. Their value is assigned based on
an overlapping priority assumption. For example, if
the background is known, it will get the lowest prior-
ity and it will be covered in the case of moving ob-
jects pointing to the same region or it will occupy the
regions remained uncovered. The values to be used
in the undetermined regions are taken from one of
the previous frames, by considering the optical flow
as well.

We consider a measure in order to attest the effi-
ciency of the segmentation and of correctly evaluating
the entire model. This measure compares the pre-
dicted future frame g(t + 1), reconstructed based on
(14), and the actual frame (if it is available) :

E=|g(t+1) - ft+1)| (15)

This energy function is similarly with that employed
for reconstructing each frame from the tracked se-
quence in (8). If E is above a certain threshold, then
the model is not valid at the respective frame. Usually,
this is caused because a new moving object appears in
the sequence or one of the existing moving objects gets
out of the scene. In such a case, the RBF network is



Figure 1. The first frame of the “Hamburg Taxi”
image sequence

Figure 2. The 20th frame of the “Hamburg Taxi”
image sequence

retrained in order to obtain the appropriate moving
object segmentation and optical flow (5). The new
model is tracked over the following frames as described
in the previous Section.

5 Simulation results

We provide results when the proposed algorithm is
applied in the “Hamburg Taxi” image sequence. Three
main moving objects and the stationary background
have to be identifyed and segmented in this image se-
quence. The first and the 20th frames are displayed in
Figures 1 and 2. The moving object segmentation as
provided by MRBF network for the first frame is given
in Figure 5. Its correspondent optical flow is shown in
Figure 6. The undetermined regions for the first frame
are shown in Figure 3. They are located in between
the boundaries of the same moving object in the two
frames, as it can be observed from this Figure. After
tracking the moving objects as described in Section 3
we obtain the segmentation of the 20th frame, as pro-
vided in Figure 7. Six past frames (M = 6) have been
used in the tracking model. It can be observed that

Figure 4. The predicted 20th frame.

the segmentation of the white taxi in the center of
the frame is quite well defined despite the fact that
the taxi, due to the 3-D perspective view, changes its
shape when turning around the corner. The optical
flow corresponding to the tracked objects in the 20th
frame is represented in Figure 8. The 20th frame,
reconstructed from the predicted segmentation and
moving object velocities as described in Section 4, is
provided in Figure 4. The MRBF network training
took 33.3 seconds. The trained network, can be used
for those successive frames which match the model ac-
cording to a criterion [3]. The network is applied for
every feature vector of the image. In this case 95 sec-
onds are required for segmenting the moving objects
and the optical flow for 20 frames. When employing
tracking as described in this study, only 68 seconds are
necessary for the same frames. The processing times
have been evaluated on a SiliconGraphics Indy Work-
station. The segmentation provided by the tracking
algorithm is quite good as it can be observed from
the experimental results and provides a good basis for
prediction based reconstruction.



