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ABSTRACT
In this paper we propose an interpolation algorithm using
a morphological morphing approach. The aim of this al-
gorithm is to reconstruct an � -dimensional object from a
group of

� � � � � -dimensional sets representing object sec-
tions. The morphing transformation modifies consecutive
sets so that they approach in shape and size. When the two
morphed sets become idempotent we generate a new set.
The entire object is modeled by successively interpolating a
certain number of intermediary sets between each two con-
secutive initial sets. The interpolation algorithm is used for
3-D tooth reconstruction.

1. INTRODUCTION

In volumetric images, acquired by magnetic resonance imag-
ing, computer tomography or after mechanical slicing and
digitization, the distance between adjacent image elements
within a slice can be smaller than the distance between two
neighbouring slices. In such situations it is necessary to in-
terpolate additional slices in order to obtain an accurate de-
scription of the object for volume visualization and process-
ing. There are two main categories of interpolation tech-
niques for reconstructing objects from sparse sets: grey-
level and shape-based interpolation.

Shape-based interpolation algorithms usually consider
certain features describing the object shape. The algorithms
proposed in [1] employ distance transforms for interpolat-
ing new sets by adding or removing layers of elementary
units. Other extensions of this algorithm are proposed in
[2, 3]. In [4] a morphing algorithm based on a distance
transform, namely the skeleton by influence zones (SKIZ),
was used for set and function interpolation. We propose a
new approach which morphs two consecutive sets one into
another. The interpolated set is obtained for the idempo-
tency of the two morphed sets. The interpolation is repeated
until we obtain a contiguous volume. We describe the mor-
phological morphing procedure in Section 2 and we show
how to interpolate the entire volume in Section 3. Simula-
tion results are provided in Section 4 and the conclusions
are drawn in Section 5.

2. MORPHOLOGICAL MORPHING

We employ mathematical morphology operations [5] such
as erosions and dilations for morphing consecutive 2-D sets
one into another. Let us consider that we are provided with
two aligned sets representing two shapes, denoted by � 	
and � 	 � 
 , partially overlapping, i.e. � 	 � � 	 � 
 �� � , in
an � -dimensional space denoted as � . Shape morphing is a
technique for constructing a sequence of sets representing a
gradual transition between the two given shapes. Let us con-
sider � 	 � � an element (pixel in 2-D or voxel in 3-D) con-
tained into the set � 	 , where � denotes an ordering number
and � �	 � � � � 	 denotes the complement (background)
of the set � 	 . Each element � 	 � � in one set will have a cor-
responding element, that has the same coordinates, which
may be a member of the other set � 	 � 
 � � ! � 	 � 
 , or may
be part of its background � �	 � 
 � � ! � �	 � 
 .

Our morphing transformation ensures a smooth transi-
tion from one shape set to the other by means of several sets
whose shapes change gradually. Let us denote the boundary
set of � 	 by # 	 . We can identify three possible correspon-
dence cases for the elements of the two aligned sets. One
situation occurs when the border region of one set corre-
sponds to the interior of the other set. In this case we dilate
the border elements :

If � 	 � � ! # 	 % � 	 � 
 � � �! # 	 � 

then perform � 	 � � ) + 
 (1)

where ) represents dilation and + 
 is the structuring ele-
ment for the set � 	 . A second case occurs when the border
region of one set corresponds to the background of the other
set. In this situation we erode the boundary elements :

If � 	 � � ! # 	 % . � �	 � 
 � �
then perform � 	 � � 1 + 
 (2)

where 1 denotes erosion. No modifications are performed
when both corresponding elements are members of their
sets boundary :

If � 	 � � ! # 	 % � 	 � 
 � � ! # 	 � 

then perform no change

(3)
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The last situation corresponds to regions where the two sets
coincide locally and no change is necessary, while (1) and
(2) correspond to local morphing transformations.

By including all these local changes we define the fol-
lowing morphing transformation of the set � 	 depending
onto the set � 	 � 
 and on the structuring element + 
 :

2 � � 	 3 � 	 � 
 5 + 
 � � 6 � � 	 1 + 
 � 9 � � � 	 � � 	 � 
 � ) + 
 � <
� � � 	 9 � 	 � 
 �

(4)

A similar morphing operation
2 � � 	 � 
 3 � 	 5 + > � is defined

onto the set � 	 � 
 depending on the set � 	 . According to
these transformations, the intersection � 	 @ � 	 � 
 is always
retained by the morphing operations while the resulting set
is always a subset of � 	 9 � 	 � 
 . The first set will be eroded
in those regions which correspond to the background of the
second set and will dilate in regions which correspond to the
interior of the second set.

The morphing operation applied on either set produces
a new set. These morphed sets are closer to each other in
shape structure and in size. In order to assess their similar-
ity we define a shape distance. Let us consider a structuring
element + � B � as a ball of radius

B
. This can be obtained

from an elementary ball (ball of unit radius) after
B

suc-
cessive dilations using the elementary ball as the structur-
ing element. Let us define a shape distance between the
original set and the morphed set as given by the size of the
structuring element,

B
. Since each set is ordered according

to an index, we can conventionally assume a positive and
a negative direction. After morphing the sets � 	 and � 	 � 

with the same structuring element + � B � , the distance of the
morphed sets to their original sets is given by :

D � 2 � � 	 3 � 	 � 
 5 + � B � � 5 � 	 � �
� D � 2 � � 	 � 
 3 � 	 5 + � B � � 5 � 	 � 
 � � B (5)

where the negative distance has been conventionally assigned
according to the indexing of sets in the volumetric represen-
tation. If we consider identical structuring elements for both
sets, each resulting morphed set is equi-distant to its original
set according to (5).

3. GEOMETRICALLY CONSTRAINED
INTERPOLATION

The morphing operation defined by (4) is applied iteratively
onto the sets resulting from previous morphings. The suc-
cession of morphing operations creates new sets. With each
iteration, these sets are closer in shape and size to each
other. The morphing interpolation is based on the follow-
ing theorem :

Theorem 1 We can generate an intermediary set between
two object sets � 	 and � 	 � 
 , satisfying � 	 � � 	 � 
 �� � ,
by iterating the set transformation defined in (4) onto their
previous iteration output sets, until idempotency.

Proof: In order to prove the morphing interpolation con-
vergence to idempotency let us consider a set M , represent-
ing the � N B

operation for the two given sets :

M � � 	 � 
 5 � 	 � � � � 	 � 
 O � 	 � � � � 	 � 
 R � 	 � (6)

Let us consider that the local morphing termination condi-
tion (3) does not occur at the next morphing iteration, which
implies that :

6 � � 	 � 
 O � 	 � 1 + < U 6 � � 	 � 
 R � 	 � ) + < (7)

In this case, we observe that, by considering
2 � � 	 3 � 	 � 
 5 + 
 �

from (4) and
2 � � 	 � 
 3 � 	 5 + 
 � , and by grouping the result-

ing set components we obtain :

M � 2 � � 	 3 � 	 � 
 � 5 2 � � 	 � 
 3 � 	 � � � 6 2 � � 	 3 � 	 � 
 � 9
2 � � 	 � 
 3 � 	 � < � 6 2 � � 	 3 � 	 � 
 � � 2 � � 	 � 
 3 � 	 � < (8)

� 6 � � � 	 � 
 9 � 	 � 1 + � � � � � 	 � 
 � � 	 � ) + � <
� � � 	 � 
 9 � 	 � � M � � 	 � 
 5 � 	 � 1 + [

For the sake of notation simplicity we dropped out the de-
pendency on the elementary structuring element from the
expression of the morphing transformation (8). The succes-
sive morphing operations preserve the morphing rules out-
lined in (1), (2) and (3). We can observe that erosion applies
everywhere on the set M , except for the points which fulfill
the condition (3). There is a clear interdependency between
the set M defined in (6) and the morphological shape dis-
tance defined in (5). While the set M , with each iteration, is
eroded, as it is shown by equation (8), the distance between
the resulting sets, morphed from � 	 and � 	 � 
 , decreases
correspondingly :

D � 2 � � 	 3 � 	 � 
 � 5 2 � � 	 � 
 3 � 	 � � � D � � 	 5 � 	 � 
 � � ] [ (9)

Let us denote the morphing at iteration ^ , initiated from the
sets � 	 and � 	 � 
 , by

2 _ � � 	 3 � 	 � 
 � and
2 _ � � 	 � 
 3 � 	 � , re-

spectively. According to the relationship (9), at each itera-
tion the distance between the morphed sets decreases. The
equation (3) represents a local stopping condition which is
likely to extend with each iteration to a larger amount of el-
ements from the boundary of the morphed sets. The termi-
nation condition of the interpolation algorithm corresponds
to the case when the morphing termination condition of (3)
is fulfilled for all the boundary points of the two morphed
sets. In this situation the two morphed sets become idem-
potent. Let us consider that this happens after ^ 
 iterations.
Idempotency after ^ 
 iterations is shown by a zero distance
between the resulting morphed sets :

D � 2 _ ` � � 	 3 � 	 � 
 � 5 2 _ ` � � 	 � 
 3 � 	 � � � a (10)

Let us denote by b� 	 � c e g the set resulting at the idempotency
of the morphing transformation :

b� 	 � c e g � 2 _ ` � � 	 3 � 	 � 
 � � 2 _ ` � � 	 � 
 3 � 	 � (11)
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The resulting set has similarities to both initial sets � 	 and
� 	 � 
 . This set is equidistant to the original sets :

D � � 	 5 b� 	 � c e g � � � D � � 	 � 
 5 b� 	 � c e g � (12)

The existence of a set which is equidistant to the initial sets
and which corresponds to the case when the set M � ^ 
 � be-
comes a contour proves the convergence of the morphing
Theorem 1.

Let us consider that a 3-D object is represented by the
group of its cross-section sets. The morphing procedure pre-
sented above interpolates a new group of sets between each
two consecutive sets. In the general case, each new set is
equi-distant to the original neighbouring sets. The initial
and the interpolated sets forms a new group of sets which
can be used for a better visualization of the given 3-D object.
We repeat the same procedure on the new pairs of consecu-
tive sets for modeling the entire object to a finer detail. Afterk

repetitions, the number of interpolated sets generated be-
tween two initial sets is ] l � � . Evidently, there is an upper
limit in the number of distinctly interpolated sets generated
between two given consecutive sets. For m initial sets we
obtain

� m � � � � ] l � � � interpolated sets. The number of
sets to be inserted depends on the relationship between the
slice spacing and set element size. In the case of unequally
spaced cross-section sets, a different number of sets must be
interpolated between each two consecutive slices. Another
way to deal with unequally spaced interpolation would be
to generate all the possible intermediary sets and to choose
certain sets, according to their desired intra-set distance.

4. SIMULATION RESULTS

We have used the proposed morphological morphing inter-
polation algorithm for reconstructing the external and inter-
nal 3-D morphology of several teeth. Such an application
is of great interest in endodontology [6]. Two examples are
presented in this paper : an incisor (single root tooth) and
a molar (three-root tooth). These teeth have been mechan-
ically sliced, digitized and aligned using a semi-automatic
procedure. Aligned slices are displayed in Figure 1 for the
incisor. We have used the morphological interpolation al-
gorithm described in Sections 2 and 3 for reconstructing
the incisor from the given set of slices. In the case of the
incisor, the morphing algorithm is applied iteratively four
times. Thus we eventually produce ] � o � ] p � � � r ] ] � t t u
slices from only 22 original slices. A set of interpolated
frames from the incisor sequence is displayed in Figure 2.
We can observe from this figure that both canal and outer
tooth surface are being smoothly changed from one slice
to the next one. 3-D reconstructions from two different
viewing angles are shown in Figures 3a and 3b, for the in-
cisor. A set of slices from a molar are displayed in Figure 4.
Two 3-D views of the reconstructed 3-D molar are shown

in Figures 5a and 5b. The interpolation of the molar image
sequence shows the capability of morphing between slices
with disconnected sets and those having compact sets. In
both examples the morphology of the reconstructed teeth is
quite accurate.

Fig. 1. Segmented and aligned slice sets of an incisor.

Fig. 2. Interpolated slices.

We compare the mathematical morphological interpo-
lation algorithm with a linear interpolation algorithm. We
apply the linear interpolation algorithm on the incisor se-
quence displayed in Figure 1. In order to compare the two
interpolation algorithms we derive an error measure. We
consider as a performance measure the percentage of wrongly
estimated pixels when comparing � 	 � 
 with the set b� 	 � 

resulted from the interpolation of � 	 and � 	 � > :

� � 3 M � b� 	 � 
 5 � 	 � 
 � 3
3 � 	 � 
 3 (13)

where 3 � 3 denotes the set cardinality. In Table 1 we provide
the results for reconstructing three different slices from the
incisor group of sets as well as the average result for recon-
structing any intermediary slice � 	 � 
 from the given group
of sets � 	 and � 	 � > for any w ! x � 5 m � ] { , where m is
the number of initial sets. For comparison we provide the
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(a) (b)

Fig. 3. 3-D views of the recovered incisor.

normalized slice difference between the two slices used for
interpolation. These results show that the proposed mor-
phological morphing interpolation algorithm provides good
experimental results in the case of 3-D tooth reconstruction
from slices.

Fig. 4. Initial slices of a molar.

5. CONCLUSIONS

This paper introduces a new interpolation algorithm for re-
constructing � -dimensional shapes from ( � � � )-dimensional
sparse sets. The proposed algorithm inserts a new set be-
tween each two existing ones by employing a morphologi-
cal morphing transformation. The new set is equi-distant to
the original sets according to a distance measure. The pro-
cedure is repeated on the resulting group of sets. The pro-
posed algorithm is applied for 3D teeth reconstruction. The
simulation results show good interpolation and robustness
even when we have significant variations in shape structure
from one set to the next one. The motivation for develop-
ing this algorithm is to create a database of various types of
teeth. Such tooth volumes can be used for a virtual tooth
drilling simulator in pre-clinical dentistry training.
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(a) (b)

Fig. 5. 3-D views of the interpolated molar.

Table 1. Comparison between morphological morphing and
linear interpolation when reconstructing an incisor.

Slice Morphological Linear
Frames Differ. (%) Morphing Interpolation

i,i+1,i+2 } ~ � � � � � � � � � }} � � } � � � � � � � �
4,5,6 62.9 5.9 11.925

10,11,12 26.8 6.84 9.46
18,19,20 27.2 7.5 14.28
Average 51.5 9.25 11.46
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