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Abstract. This paper presents a new method for reconstructing paint-
ings from component images. A set of monocular images of a painting
from a straight homogeneous generalized cylinder is taken from various
viewpoints. After deriving the surface localization in the camera coor-
dinate system, the images are backprojected on the curved surface and
flattened. We derive the perspective distortion of the scene in the case
when it is mapped on a cylindrical surface. Based on the result of this
study we derive the necessary number of views in order to represent the
entire scene depicted on a cylindrical surface. We propose a matching-
based mosaicing algorithm for reconstructing the scene from the curved
surface. The proposed algorithm is applyed on paintings.

1 Introduction

In this study we consider images taken by monocular vision. Let us consider
a painting on a straight homogeneous generalized cylinder [1]. We identify the
localization parameters of the painted surface by considering the projections of
two parallels in the given image. We calculate the common normal of the parallels
projections and we derive the localization parameters. Based on the localization
parameters we backproject the image on the curved surface and afterwards we
flatten it [2].

The difference in perspective distortion has been used for computing the
shape of the curved surface from texture information [3]. In this paper we analyze
the geometrical distortions caused by the perspective view in the case of images
painted on cylindrical surfaces.

Mosaicing is a well known technique used for representing images of paintings
[4, 5]. Distortions caused by the painting surface shape must be corrected before
the mosaicing. In [6] the perspective projection distortions caused by rotating
a camera around its focal point are corrected by projecting the images onto a
Gaussian sphere which is flattened on a plane tangent to it. Mosaicing assemble
a set of images, each representing details of a certain region of the painting, in
order to reconstruct the entire scene. The methods used in [4, 6] employ the
matching of manually selected points. In this study we propose an automatic



mosaicing method [7] based on region matching [5]. In the case when the images
are obtained by flattening the representations of a curved surface, the image
regions with large distortions, caused by perspective projection, are excluded
from matching. We evaluate the bounds of the necessary number of views in
order to represent the entire painting from a cylinder. The proposed method is
applied in painting visualization and the result can be further used for painting
restoration.

2 Curved Surface Localization and Flattening

In order to perform the localization from a single perspective view, we limit our
study to the case when the surface has a curvature different than zero in only
one direction. The localization is described by three rotation angles : 8;, , and
.. These rotation angles provide the relationship between the camera coordi-
nate system and the coordinate system of the curved surface. Two projection
axes must be localized [2]. First we find the projection of the revolution axis,
and afterwards we derive the position of the second axis corresponding to the
projection of one particular parallel. In order to find the projection of the rev-
olution axis, we identify the common normal P, P, of two parallel curves which
are projected in the image, as shown in Figure 1 and described in [2]. The slope
of the straight line P} P> gives us the axis’ direction. In the image coordinate
system (u,v), the equation of this axis is :

v=A.u+ By, (1)

where A; and B; are the coefficients of the straight line P; P;. From the equation
(1) we derive the rotation angle 6, corresponding to the angle between u and
the revolution axis, as shown in Figure 1:

0, = arctan(A;). (2)

Among all the parallels on the curved surface, only one is projected on the image
as a straight line. This straight line belongs to the plane passing through that
parallel and through viewpoint, and defines the second axis. In order to obtain
the two other rotation angles, f, and ¢y, let us consider P, a point located on
the curve passing through either P; or P,. We define the curvature at a point
P; as :

S (P)—a(P;)
K; = lim 22221 (3)
P—P;, |PP

where i € {1,2}, a(P;) is the angle of the tangent to P;, and |FI\DZ| is the length
of the arc between P and P;. We denote by Py, the point belonging to the
revolution axis, where the curvature Ky equals zero. Considering (up, vy) the
coordinates of Py we obtain the equation of the second axis :

1 u!
v = —A—l.u + <'L76 + A—i) . (4)
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Figure 1. The two axes derived from Figure 2. The cross-section represen-
parallel curves. tation through cylinder and image.

We denote by (Ay,A,) the vector distance between (ug,vg) and Py, the
intersection of the two axes, as shown in Figure 2. The two rotation angles are
then given by :

{ 6, = arctan(?;)

0, = arctan(?—;), (5)

where f is the focal distance and k is the resolution factor. Based on the lo-
calization parameters we backproject the image on the 3D surface, we match
the point Py with the image center (ug,vg) and we obtain the virtual image. In
the virtual image, Py is projected to the image center and the projection of the
revolution axis is vertical. After backprojecting the image onto the curved sur-
face, we flatten it in order to obtain a new image without geometrical distortions
caused by the surface curvature [2, 7].

3 The Perspective Distortion Analysis when the Image is
Backprojected on a Cylindrical Surface

The flattening method described in the previous Section recovers the distortions
caused by the geometry of the painted surface, but not the distortions caused
by perspective projection. Let us consider the image of a cylindrical surface
constructed such that the axes of the camera coordinate system coincide with
the object axes. The focal axis z is perpendicular to the revolution axis of the
cylinder. The radius of the cylinder is denoted by R, and the viewpoint O is
situated at a distance [ from the revolution axis of the cylinder, as shown in the
cross-section representation from Figure 2. The projection of the arc |41 Agy| to
the virtual image plane is the line segment |U; Usyy, |. The horizontal cross-section
through image is discretized in 2m equal-sized intervals :

|UpUg—1] = |Uk—1Ug—2| = 1 pixel for k = 3,...,2m. (6)
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Let us denote the angles Al/O\Ak, Al/OTAk by a and ;. Based on geometrical
considerations, we express the length of the line segment | A D| in Figure 2, in
two different ways. From the triangles O’ A; A, and A, A, D we derive :

|ArD| = 2Rsin? (%’“) . (7
|Ar D] is calculated from the triangle A DO :
|ArD| = (/1?2 — R? — Rsin(f)) tan(ag ). (8)

From the triangle OU U, we have :
|URO| | ULUn| |Un O]
Based on classical geometry properties in triangles QU1 U,,,, OO’ A1 and by using
(6) we find : _kIO'A ok
m |O'A]  m (10)

40l w1
where we denote p = % and the angle O'OA; by a,. Afterwards, we derive
tan(ay) with respect to the number of pixels k :

by =1 (11)

mp? —k

tan(a, — ag)

tan(ay, — o) =

tan(ay) =

From (7), (8), and (11), we obtain :
ky/p? — 1
gsin? (20) = (Va7 =1 = sin(g,)) TV L (12)
2 mu? —k
for k = 1,...,2m. After deriving the angles §; from (12), we compute the arc
of the cylinder corresponding to an image segment of constant size :

[ AkAis| = (B = fe-1)R. (13)
The normalized arc length |mk_1| / |A/m\Am_1|, calculated from (13) is
represented in Figure 3 for m = 100, when pu € {1.5;3;25}. From this plot we

observe that arcs of different length from the cylindrical surface are projected to
segments with the same length in the image plane.



4 The Estimation of the Necessary Number of Views

Let us consider a set of images all taken at the same distance { from the cylinder’s
axis, each two neighboring images having an overlapping region. The region from
the cylindrical surface which projects in the image without significant distortion
contains neighboring arcs having small size variation from each other :

| Be A+ Br—2— 2Bk-1
- ﬁm + Bm—Z - 2ﬁm—l

|A/l;4k—1| - |Ak/—\1Ak_2|
A Ap1] = [Am_1 A

<6 (14)

m—2|

where |A/;;4k_1| and |Ak/_\1Ak_2| are evaluated in (13), and é is a small constant,
measuring the difference in the arc length variation, representing a distortion
measure.

As it can be observed from Figure 3, the neighboring images are likely to
be differently distorted in the overlapping regions. The regions located towards
the margins of the cylindrical surface representation are likely to contain larger
distortions than the regions situated near the cylinder’s axis projection. Let
us consider that the minimal distortion condition from (14) is verified for k =
d,...,2m—d, where d is the pixel index for which we obtain the equality in (14).

Each two images must overlap on a region corresponding to an angle larger
than 284, i.e. where the distortions according to (14) are small enough. If we
consider that each pixel in the scene should be projected in two neighboring
images at most, we obtain the maximum number of images. The minimal and
the maximal numbers of images required to represent the entire scene are :

T 27

arccos (%) — B4 sns

(15)

arccos (%)

where the angle 4 is derived from (14) and corresponds to the arc |A/;4d|. The
bounds on the number of images to be taken around a cylinder are represented in
Figure 4. In the same figure, the ceiling integer value of the minimum necessary
number of views is marked by a continuous line. As we observe from this figure,
the necessary number of images is large when the distance [ from the viewpoint
to the cylinders axis is small and decreases at three when is large.

5 The Mosaicing Algorithm

Image mosaicing is employed for assembling a set of images in order to recon-
struct an entire scene [5]. The mosaicing approach proposed in this paper is
based on matching [5, 7]. Only the part of the overlapping region which contains
a small level of distortion, as provided by (14) is considered by the matching
algorithm. Let us denote by (du, dv), the displacement between two neighboring
images.



(a) Set of images to be mosaiced. (b) The resulting image.
Figure 5. Mosaicing a set of infrared images in order to reconstruct a painting.

As in the case of the block matching algorithms [5] we define a search area
Sy x Sy in the plane uOv. The overlapping part is found based on a search for
the best matching between various regions from the two images in the given
area :

54,5, 2n 2m—2d
(du, dv) = arg kirill:l( | Z Z |pel, (i — 2n + k,j — 1) — pel,_1 (4, j)|,
i=2n—k j=I
2n 2m—2d
S0 Ipelp(i — 2n+ k, §) — pelp_1 (i, 5 — 1)] ),(16)
i=2n—k j=I

where pel, (i, j), pel,_;(7,j) are two pixel elements from two successive images
p—1, p, (2m — 2d) x 2n is the image size after eliminating the part containing
distortions, and d is calculated according to (14).

To calculate the pixel values in the overlapping region we evaluate the mini-
mum distance from a given pixel site (4, j) to the border of the common reliable
image region :

gp—1 = min{s, j} , g, = min{dz — i,dy — j} (17)

fore=1,...,duand j = 1,...,dv. In order to ensure a smooth transition, the
overlapping area pixels are taken as a weighting of the component images pixels
with respect to the distance from the closest nonoverlapping region :

. gp P gp—l P
fzﬂj :7.15 1”.} +7f—1 1”.}1 18
(1) = = (i) + 2 (i) (19
where f(i,7) and f,(,j) denote a pixel element from the mosaiced image and
from the pth image, respectively. The proposed procedure can be easily extended
to mosaic many images having horizontal and vertical overlapping areas as ex-
emplified on a set of infrared images of an old painting in Figure 5.



(e) Result of the mosaicing algorithm ;
Figure 6. Reconstruction of an arch painting by mosaicing.
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(a), (b), (c¢) Original images of a cup ;

N

(d), (e), (f) The flattened surface representations ;

() Result of the mosaicing algorithm ;
Figure 7. Reconstruction of the ceramic decorative pattern by mosaicing.



6 Simulation Results

The proposed algorithm was applied for reconstructing several paintings on con-
vex, concave, or flat surfaces. In Figures 6 (a) and (b) two images representing
parts of a Byzantine painting on an arch are shown. The algorithm was applied
on the images of a cup represented in Figures 7 (a), (b), (¢), as well. These
images correspond to a parameter 4 = [/R = 5.5. From Figure 4 we observe
that we need four images to represent the cup’s surface. Due to the cup’s handle
and because the scene does not cover all around the cup, we use three images.
These images present distortions, caused by the painted surface, that depend on
the view-angle. We localize the painted surfaces by considering the projections
of two parallels representing the edges of the arch or those of the decorative
pattern from the cup. After finding the localization of the painted surface, we
flatten the projected images of the paintings as shown in Figures 6 (¢), (d) and
7 (d), (e), (f), respectively. The mosaicing of flattened representations are dis-
played in Figures 6 (e) and 7 (g). In color images, the localization parameters
and the relative displacements of the images are calculated from the luminance
component images. Afterwards, the result is applied on all the color components.

7 Conclusions

In this study we propose a new approach for representing the scenes painted on
the surface of straight homogeneous generalized cylinders. We provide a theoret-
ical analysis of the geometrical distortions due to the perspective projection and
we derive the necessary number of views to represent entirely the scene painted
on a cylindrical surface. We propose a new approach for image mosaicing based
on matching. This algorithm is applied for painting visualization.
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