
OPTIMAL DETECTOR STRUCTURE FOR DCT AND SUBBAND DOMAIN
WATERMARKING

Athanasios Nikolaidis Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki 540 06, GREECE,{nikola, pitas }@zeus.csd.auth.gr

ABSTRACT

Most of the watermarking schemes that have been proposed until
now employ a correlator in the detection stage. The current paper
proposes a new detector scheme that can be applied in the case
of additive watermarking in the DCT or DWT domain. Certain
properties of the probability density function of the coefficients in
these domains are exploited in order to construct an asymptotically
optimal detector based on well known results of the detection the-
ory. Detection is performed without the use of the original image,
as in methods employing different detectors. Experimental results
prove the superiority of the proposed detector over the correlator.

1. INTRODUCTION

Image watermarking as a tool for copyright protection has attracted
a lot of attention in the last few years [1, 2]. The watermark is
superimposed on the image in either an additive or a multiplica-
tive way, either in the spatial or in a transform domain. In either
case, the detection stage involves, for the majority of the reported
techniques, a simple correlator. This is done under the general im-
plicit assumption that the image pixels or transform coefficients
on which the watermark is embedded follow a normal (Gaussian)
distribution. If this is indeed the case, the correlator is the opti-
mal detector in the sense that, under a constant probability of false
alarm, the probability of false rejection is minimized [3]. However,
the host data distribution cannot, in most cases, be adequately ap-
proximated by a Gaussian pdf.

Luckily enough, the pdf of coefficients of certain transform
domains can be sufficiently approximated by a generalized Gaus-
sian distribution. Such an assumption has been adopted in [4],
where the embedding domain is that of a band of DCT coefficients
except for the DC term. A generalized Gaussian distribution is
considered for all coefficients of this band, and an additive em-
bedding rule is adopted. The ML criterion is employed in order
to derive a detector structure that is optimal under the assumption
that the watermark power is known [4].

The present paper proposes a detector structure that displays
superior performance compared to other detectors, including the
correlator, under certain assumptions. Watermarking in the DCT
and DWT domains is considered in our work. Although the pdf as-
sumption for the coefficients in these domains is the same as in [4],
we derive a different detector structure that is optimal under the as-
sumption of unknown watermark power, by employing a Rao test
that is equivalent with a GLRT (generalized likelihood ratio test).
The resulting detector is asymptotically optimal, meaning that it is
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optimal under the assumption of a large data record. The deriva-
tion of the optimal detector given the additive embedding model
and assuming ignorance about the watermark power is presented
in Section 2. In Section 3, a description of the algorithms involved
in estimating the generalized Gaussian distribution parameters is
presented. Section 4 presents the specifics for embedding in the
DCT and DWT domains. In Section 5, experimental results con-
firm the superiority of the proposed detector compared to the cor-
relator, even in the presence of compression attacks. Robustness
against geometric attacks is not examined, since the aim of the
paper is only to propose an optimization of the detection stage.
Thus, synchronization compensating for such attacks is assumed
to be present. Finally, certain conclusions about the performance
of the proposed detector are drawn in Section 6.

2. OPTIMAL DETECTOR STRUCTURE

Since the embedding model is that of an additive watermark in-
serted in a transform domain (e.g. DCT, DWT) and modulated by
a factor corresponding to the watermark power, the hypothesis test
under consideration throughout this paper will be of the form:

H1 : Y [k] = X[k] + αW [k]

H0 : Y [k] = X[k] (1)

whereX is the original image transform coefficient that follows
a certain pdf model, whose parameters can be estimated from the
watermarked image transform coefficient.W is the watermark that
is embedded in the original image transform coefficient, andα is
an amplitude parameter that corresponds to a generally unknown
watermark power.

Most of the methods that have been proposed until now em-
ploy a correlator-detector. This detector is the easiest to implement
and is based on evaluating the correlation of the possibly water-
marked (or even attacked) image transform coefficients and the
watermark under investigation:

D(Y ) =
X

k

Y [k]W [k] (2)

wherek are the indices of the transform coefficients where the
watermark is supposed to be embedded,Y is the watermarked
(and possibly attacked) transformed image, andW is the two-
dimensional watermark. The probability distribution of the cor-
relator detector is approximately normal under both hypotheses.
According to detection theory, this detector is expected to be op-
timal, that is, to present the lowest possible error probabilities, in
the case that the noise (in our case, the original image transform



coefficient) is white Gaussian (WGN), meaning that it has a white
spectrum and follows the normal distribution.

However, in practice most image transform coefficients cannot
be considered as white Gaussian noise. This leads to the conclu-
sion that watermarking algorithms that are based on a correlator-
detector perform only suboptimally. Thus, a more sophisticated
detector structure in conjunction with a better, image-dependent
approximation of the pdf of the embedding domain coefficients is
necessary in order to achieve superior detector performance.

In this paper we assume, as in [4], that all the DCT or DWT
transform coefficients, in which the watermark is embedded, fol-
low a generalized Gaussian distribution with zero mean value and
the same parametersβ andσ2:

p(X[k]) =
c1(β)√
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β is called theshapeparameter (β > −1), σ2 is the variance and
Γ(x) is the Gamma function. This assumption has been proven to
hold both for DCT and DWT domain coefficients, and has already
been employed in coding applications [5]. It is proven in [6] that
a generalized Gaussian model is more suitable for all DCT coef-
ficients but the DC, because it provides the lowest MSE (mean-
squared error) during quantization.

Kay [7] has proved that, for such a problem, a Rao test has
asymptotically optimal performance (i.e. it is indeed optimal for
large images) that is equivalent to that of a generalized likelihood
ratio test (GLRT). This test can be written as:

DR(Y ) =

hP
W [k] p′(Y [k])

p(Y [k])

i2
1
N

P
W 2[k]

Ph
p′(Y [k])
p(Y [k])

i2 (6)

whereN is the number of samples that have been watermarked,p
is the pdf andp′ is the derivative of the pdf of the image transform
coefficients under hypothesisH0.

Let us now consider the case of a known binary watermark
(W [k] ∈ {−1, 1}). Let us also assume that the possibly water-
marked transform coefficients approximately follows a general-
ized Gaussian distribution with the same parameters as the original
image transform coefficient. This can easily be proved to hold for
small values of watermark power. Thus, parameter estimation can
be performed using the watermarked image transform coefficients
instead of the original, which are not available in the detection
stage.

Formula (6) can be rewritten as:

DR(Y ) =

�P
sgn(Y [k])W [k]|Y [k]| 1−β

1+β

�2P |Y [k]|
2(1−β)
1+β

(7)

wheresgn(x) is the signum function andβ is the shape parameter
of the generalized Gaussian pdf. It has been shown that, for large
data records, this detector follows a chi-squared distribution under

both detection hypotheses. More specifically, the distribution of
the detector underH0 is χ2

1 that is, a chi-squared distribution with
one degree of freedom, whereas underH1 it is χ′2(1, λ) that is,
a non-central chi-squared distribution with one degree of freedom
and non-centrality parameterλ. The performance of this detec-
tor is the same as that of the generalized log-likelihood ratio test
([7]). Since a random variable that follows aχ′2(1, λ) distribu-
tion is equivalent to the square of a normal random variable with
mean value

√
λ and variance equal to 1, it follows that the prob-

abilities of false alarm and false rejection (PFA andPFR) which
characterize the detector performance are given by:

PFA = 2Q(
p

γ′)

PFR = 1−Q(
p

γ′ −
√

λ)−Q(
p

γ′ +
√

λ) (8)

whereγ′ is the detection threshold. The watermark detection per-
formance depends on the so-callednon-centrality parameterλ.
For the case of the generalized Gaussian pdf for a certain range
of values of the parameterβ (−1 < β < 3), parameterλ can be
defined as:

λ = Nα2 4Γ( 3−β
2

)Γ( 3
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2
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It is interesting to see thatPFR decreases monotonically with
λ. This means that, for increased watermark powerα or for larger
sample numberN , the probability of false alarm decreases, as ex-
pected.

3. GENERALIZED GAUSSIAN PARAMETER
ESTIMATION

As derived in Equation (7), the detector formula involves the value
of the parameterβ of the generalized Gaussian approximation of
the transform coefficients. In order to assess the performance of
the new detector using 9, we should also have an estimate ofσ so
that the parameterλ can be calculated.

The variance of the generalized Gaussian distribution that fits
best to the data can be estimated using the sample variance:

σ̂2
Y =

1

N

NX
i=1

(Yi − µ̂Y )2 (10)

whereµ̂Y is the sample mean,N is the number of image data sam-
ples andYi are the data samples of the watermarked transformed
image under test. The estimates are quite satisfactory since the
number of data samples are of the order of104 for images consid-
ered in our experiments.

As far as the shape parameterβY is concerned, we wish to
estimate it in a computationally efficient way. For this reason, the
technique proposed in [8] is adopted. This is based on exploiting
the relation between the varianceσ2

Y , the mean of the absolute
valuesE [|Y |] and the shape parameterβY :
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also called thegeneralized Gaussian ratio function. After com-
puting the estimate of the varianceσ̂2

Y by using Equation (10) and
the estimate of the mean of the absolute values usingÊ [|Y |] =



(1/N)
PN

i=1 |Yi − µ̂Y | (the mean value is subtracted since we
want an estimate of the parameters that is as close to the origi-
nal data as possible), we calculate the ratioρ = σ̂2

Y /Ê2 [|Y |] and
finally solve the equation 11 forβY using e.g. a lookup table.

4. EMBEDDING IN DCT AND SUBBAND DOMAINS

4.1. DCT domain

An investigation on the possible exploitation of the (non-DC) DCT
coefficients distribution has been previously done in [4]. Our ap-
proach assumes that the watermark power is unknown to the detec-
tor, which is realistic. The resulting detector structure is optimal
for the asymptotic case, which is fulfilled in practice.

The dataset on which we embed the watermark is the set of the
non-DC coefficients resulting from a8 × 8-block DCT transfor-
mation. We estimate the parameters of the generalized Gaussian
distribution based on all coefficient samples. An example is given
in Figure 1 where the watermarked DCT coefficients of the Ba-
boon image are approximated by a generalized Gaussian pdf, with
shape parameterβ = 1.76 and varianceσ2 = 0.0171.
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Fig. 1. Watermarked data samples histogram of DCT domain of
Baboon and its generalized Gaussian pdf model fitting.

The DCT coefficients data set is traversed from top left to bot-
tom right in a zig-zag order (the DC term is located in the upper
left corner of the block). We can choose to use a diagonal band of
low-to-middle frequency coefficients for watermark embedding in
order to achieve robustness to lowpass filtering and compression.
For example, we can choose those coefficientsC(u, ν) that satisfy
3 ≤ u + ν ≤ 6 for a8× 8 DCT block.

4.2. Subband domain

As pointed out in [6] as well as in the classic paper of Mallat on
wavelets [9], subband image data can be fairly well represented by
generalized Gaussian distributions. This holds for all frequency
bands but the lowest one. An example is given in Figure 2, where
the watermarked coefficients of the HL1 subband of the Baboon
image are approximated by a generalized Gaussian pdf with shape
parameterβ = 1.79 and varianceσ2 = 0.0137.

The 2-D DWT decomposes an image into space-frequency
subbands by applying lowpass and corresponding highpass filters
to the original image at each dimension and subsequently down-
sampling the result by a factor of2. In this way, the so-called
detail images are produced, as well as a smoothed image. This can
be repeatedly performed up to the desired resolution level.

5. EXPERIMENTAL RESULTS

In order to confirm the superiority of the new detector compared
to the classic correlator, and to the correlator proposed in [4], we
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Fig. 2. Watermarked data samples histogram of HL1 subband of
Baboon and its generalized Gaussian pdf model fitting.

conducted a number of experiments on several real images of size
512 × 512 and for several SNR values (equivalently, watermark
power values). Experiments were performed by embedding differ-
ent binary pseudo-random watermarks in the coefficients of either
the DCT or the DWT domain, and afterwards detecting them by
the proposed detector, the correlator and the detector proposed in
[4], having always in mind that the watermark power is not known
at the detection stage. For this reason, a constant value of 1 is im-
plied for watermark power in the case of the detector in [4]. The
performance of all detectors was evaluated on undistorted images
as well as JPEG compressed images (in the case of DCT embed-
ding) and SPIHT compressed images (in the case of DWT embed-
ding).

An example of a result for DCT domain embedding is shown
in Figure 3. The original and watermarked versions of the Bridge
image of size512 × 512 are shown in Figures 3(a) and 3(b) re-
spectively, for SNR'43dB. Because of the high SNR value, no
visual artifacts can be noticed. Figure 3(c) shows the ROC curves
(plots ofPFA versusPFR for several detection thresholds) for all
considered detectors, when no attack (i.e. intentional or uninten-
tional image processing operation) is imposed. The superiority
of the proposed detector is obvious, whereas the other two meth-
ods exhibit similar performance. A curve that is derived theoret-
ically based on the estimated values of the pdf parameters, is de-
lineated in the same figure withx. The respective experimental
curve demonstrates lower performance, due to the bias of the ex-
perimental data from the estimated pdf. After a moderate JPEG
compression attack of quality factor 95%, the performance of all
detectors degrades but the new detector still demonstrates a better
performance, as it can be seen in Figure 3(d).

In the case of DWT domain embedding, the watermark is em-
bedded in all coefficients that correspond to subbands of a 2-level
transformation except for the smoothed image that corresponds to
the LL2 subband. Figure 4(a) shows the ROC (receiver operating
characteristics) curves resulting from the watermark detection in
subband HH1 of the Boat image for SNR'37dB, for additive em-
bedding in the subbands of the 2-level DWT transformation (ex-
cept LL2). The new detector displays, again, better performance,
especially when compared to the log-likelihood-based detector. It
is also superior to the correlator detector. The curve that is derived
theoretically after pdf parameter estimation is delineated withx.
We can notice that the experimental performance is, again, worse
than the theoretical but it is substantially superior to that of the
other detectors. The same observations also hold after a moderate
SPIHT compression (3bpp), as is shown in Figure 4(b).
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Fig. 3. (a) Original Bridge image. (b) Bridge watermarked in the
DCT domain (SNR'43dB). (c) ROCs without attack. (d) ROCs
after JPEG compression (95%).

6. CONCLUSIONS

A new detector structure for watermarking schemes has been pro-
posed in this paper. This is derived from well grounded theoretical
results of statistical detection theory. A detector that is equivalent
to a GLRT is introduced, that is asymptotically optimal in GWGN
pdf models. Optimality is ensured in the case of watermarking
since the datasets are adequately large. A generalized Gaussian
distribution is assumed both in the DCT and DWT watermark em-
bedding domains. The pdf parameters can be estimated sufficiently
from the watermarked transform coefficients instead of the origi-
nal transform coefficients without violating the test requirements.
The detector is proven to perform optimally in practice when no
attacks are imposed, but also under moderate compression levels,
considering the watermark power employed in our experiments.
Results are compared to those of the correlator-detector and the
detector derived based on the log-likelihood ratio function, when
no knowledge of the watermark power is available.
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Fig. 4. (a) ROCs without attack for watermarked Boat image
(SNR'37dB). (b) ROCs after SPIHT compression (3bpp).
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