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Abstract. In this paper, a two-class pattern recognition problem is
studied, namely the automatic detection of speech disorders such as vocal
fold paralysis and edema by processing the speech signal recorded from
patients affected by the aforementioned pathologies as well as speakers
unaffected by these pathologies. The data used were extracted from the
Massachusetts Eye and Ear Infirmary database of disordered speech. The
linear prediction coefficients are used as input to the pattern recognition
problem. Two techniques are developed. The first technique is an optimal
linear classifier design, while the second one is based on the dual-space
linear discriminant analysis. Two experiments were conducted in order
to assess the performance of the techniques developed namely the detec-
tion of vocal fold paralysis for male speakers and the detection of vocal
fold edema for female speakers. Receiver operating characteristic curves
are presented. Long-term mean feature vectors are proven very efficient
in detecting the voice disorders yielding a probability of detection that
may approach 100% for a probability of false alarm equal to 9.52%.

1 Introduction

Speech processing has proved to be an excellent tool for voice disorder detection.
Among the most interesting recent works are those concerned with Parkinson’s
Disease (PD), multiple sclerosis (MS) and other diseases which belong to a class
of neuro-degenerative diseases that affect patients speech, motor, and cognitive
capabilities [1,2]. Such studies are based on the special characteristics of speech
for persons who exhibit disorders on voice and/ or speech. They aim at either
evaluating the performance of special treatments (i.e. LSVT [2,3]) or develop-
ing accessibility in communication services for all persons [4]. Thus, it would
possibly be a matter of great significance to develop systems able to classify the
incoming voice samples into normal or pathological ones before other procedures
are further applied.

In this paper, we are concerned with vocal fold paralysis and vocal fold
edema, which are both associated with communication deficits that affect the
perceptual characteristics of pitch, loudness, quality, intonation, voice-voiceless
contrast etc, having similar symptoms with PD and other neuro-degenerative



diseases [5]. In either case, a two-class pattern recognition problem is essentially
studied.

Closely related previous works are the detection of vocal fold cancer [6],
where a Hidden Markov Model (HMM)-based classifier was employed and the
binary classification between normal subjects and subjects suffering from differ-
ent pathologies in [7], where Mel frequency cepstral coefficients and pitch were
used as features for classification that was performed by the linear discriminant
classifier, the nearest mean classifier, and classifiers based on Gaussian mixture
models or HMMs. Three parameters namely the number of discrimination, the
level of clustering, and the average clustering were assessed for disease discrim-
ination based on acoustic features in [8]. The performance of Fisher’s linear
classifier, the K-nearest neighbor classifier, and the nearest mean one for vocal
fold paralysis and vocal fold edema was assessed in [9]. An attempt is presented
to identify pathological disorders of the larynx such as vocal fold paralysis using
wavelet analysis and multilayer neural networks in [10]. The detection of certain
voice pathologies from the cepstral content of the mucosal wave that is recon-
structed by inverse filtering based on findings from the behavior of a 2 m vocal
cord model is discussed in [11].

In this paper, two techniques based on linear classifiers are developed. The
first one is a sample-based optimal linear classifier design, while the second
one is based on the dual-space linear discriminant analysis. The work presented
in this paper extends previously reported results in [9]. We are not interested
in the detection of pathological speech as in [7], but in the assessment of the
discriminatory capability of the aforementioned classifiers for detecting vocal
fold paralysis in male speakers and the detection of vocal fold edema in female
speakers. The pattern recognition experiments were conducted by employing
either frame-based 14th order linear prediction coefficients or their long-term
mean vectors for each speaker. Leave-one-out estimates of the probability of
false alarm and the probability of detection are derived and receiver operating
characteristic (ROC) curves are demonstrated.

The outline of the paper is as follows. Section 2 describes the design of sample-
based linear parametric classifiers. The design of dual space linear discriminant
classifiers is discussed in Section 3. The data-set used is presented in Section 4
along with the feature extraction. Experimental results are reported in Section 5
and conclusions are drawn in Section 6.

2 Sample-Based Linear Parametric Classifiers

We focus on a two-class pattern recognition problem. Let X denote a sample
(i.e. a feature vector). In this paper, linear parametric classifiers are studied
regardless of the pattern distributions and hence the decision rule is of the form

A
h(X) = VX +u 20, (1)
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where V' is the classifier coefficient vector, vy is the threshold, and §2;, i = 1,2
denote the two classes. The optimal linear classifier is of the form [12]:

V= [SZ1+(1_3)22]71 (M2_M1)7 (2)

where X; is the covariance matrix of the samples that belong to class £2; and M;
is the corresponding mean vector. The optimal linear parametric classifier can
be designed using the iterative Algorithm 1.

Algorithm 1. Linear parametric classifier design

Step 1: Divide the available samples into two groups namely the design sample
set and the test sample set. .

Step 2: Using the design samples, compute the sample mean M; and the sample
covariance matrix X, 1 = 1, 2.

Step 3: Change s from 0 to 1. N N P

Step 4: Calculate V for a given s by V = [sX] + (1 — 8) Y]~} (My — My).

Step 5: Using the coefficient vector V' obtained in Step 4, compute yj(»l) =

VTXJ(i), fori = 1,2 and j = 1,2,..., N, where X](-i) is the jth test sam-
ple in the class §2;.
( 1)

Step 6: The scalar values yjl) and yj(-2) that do not satisfy y;" < —wvo and

y§2) > —uo are counted as classification errors. Changing vy from —oo to

+o0 find vy that yields the smallest classification error.
Step 7: Record the classification error determined in Step 6 and go to Step 3.

Algorithm 1 makes no assumption concerning the distributions of the fea-
ture vectors X. It is known as holdout method and produces a pessimistic bias
in estimating the classification error. If Step 1 is omitted and the classifier is de-
signed using all the available samples and tested on the same samples in Step 5,
then the so called resubstitution method results. The latter method produces an
optimistic bias in estimating the classification errors. As the number of samples
increases towards oo, both the bias of the holdout method and that of the resub-
stitution method are reduced to zero. As far as the parameters are concerned,
we can get better estimates by using a larger number of samples. However, in
most cases, the number of the available samples is fixed.

3 Dual Space Linear Discriminant Analysis

A Dual Space Linear Discriminant Analysis algorithm was proposed for face
recognition in [13]. In contrast to the linear parametric classifier described in
Section 2, this algorithm is not restricted to a two-class problem.

Let the training set contain L classes and each class (2;,7 = 1,2, ..., L have n;
samples. Then the within class scatter matrix S,, and the between class scatter
matrix Sp, are defined as

L
Sw = Z; > (X = M) (X — My)" (3)
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Sy =Y mi(M; — M)(M; — M)" (4)

i=1
where M is the gross-mean of the whole training set and M;, i =1,2,..., L are
the class centers for (2;, ¢« = 1,2,..., L. The Dual Space Linear Discriminant

Analysis is summarized in Algorithm 2.

Algorithm 2. Dual space linear discriminant classifier design
At the design (training) stage:

Step 1: Compute S,, and S, using the design set.

Step 2: Apply principal component analysis (PCA) to S, and compute the
principal subspace F' defined by the K eigenvectors V = [@1|Ps]...|P] and
its complementary subspace F. Estimate the average eigenvalue p in F.

Step 3: All class centers are projected onto F' and are normalized by the K

eigenvalues. Then Sy is transformed to
KPP =A"2VTSVA 3, (5)

where A = diag{\;, \a,..., Ak} is the diagonal matrix of the K largest
eigenvalues that are associated with F'. Apply PCA to K, lf) and compute the
lp eigenvectors ¥p of K, f with the largest eigenvalues. The [p discriminative
eigenvectors in F' are defined as

Wp=VA 30p. (6)

Step 4: Project all the class centers to F' and compute the reconstruction dif-
ference as

A, = (I -VVTA, (7)

where A = [M;[Mp|...|ML] is a matrix whose columns are the class centers.
A, is the projection of A onto F. In I, Sy is transformed to

K& =T -VvVD)Sy(I-vvT). (8)

Compute the lc eigenvectors of K, bc with the largest eigenvalues Y. The lo
discriminative eigenvectors in F' are defined as

We = (I -VVhue. (9)
At the test stage:

Step 1: All class centers M;, j =1,2,..., L as well as the test samples X; are
projected to the discriminant vectors in F' and F' yielding

al = W5 M; (10)
af = WM, (11)
af =WhX, (12)
al = WEX,. (13)

Step 2: The test sample X; is assigned to the class

. L 1
i = argamin {laf — af 1+ 7 o~ o} (19



4 Datasets and Feature Extraction

Due to the inherent differences of the speech production system for each gender,
it makes sense to deal with disordered speech detection for male and female
speakers separately. In the first experiment that concerns vocal fold paralysis
detection, the dataset contains recordings from 21 males aged 26 to 60 years
who were medically diagnosed as normals and 21 males aged 20 to 75 years who
were medically diagnosed with vocal fold paralysis. In the second experiment
that concerns vocal fold edema detection, 21 females aged 22 to 52 years who
were medically diagnosed as normals and 21 females aged 18 to 57 years who were
medically diagnosed with vocal fold edema served as subjects. The subjects might
suffer from other diseases too, such as hyperfunction, ventricular compression,
atrophy, teflon granuloma, etc. All subjects were assessed among other patients
and normals at the MEEI [14] in different periods between 1992 and 1994. Two
different kinds of recordings were made in each session: in the first recording
the patients were called to articulate the sustained vowel “Ah” (/a/) and in
the second one to read the “Rainbow Passage”. The former recordings are those
employed in the present work. The recordings made at a sampling rate of 25
KHz in the pathological case, while at a rate of 50 KHz in the normal case. In
the latter case, the sampling rate was reduced to 25 KHz by down-sampling. The
aforementioned datasets are the same used in [9]. However, in this work more
frames are considered per speaker utterance.

As in [9], 14 linear prediction coefficients were extracted for each speech frame
[15]. The speech frames have a duration of 20 ms. Neighboring frames do not
possess any overlap. Both the rectangular and the Hamming window are used
to extract the speech frames. In the first experiment, the sample set consists
of 4236 14-dimensional feature vectors (3171 samples from normal speech and
another 1065 samples from disordered speech) for male speakers. In the second
experiment, the sample set consists of 4199 14-dimensional feature vectors (3096
samples from normal speech and another 1103 samples from disordered speech
vectors) for female speakers.

Besides the frame-based feature vectors, the 14-dimensional mean feature
vectors for each speaker utterance are also calculated. By doing so, a dataset
of 21 long-term feature vectors from males diagnosed as normal and another
21 long-term feature vectors from males diagnosed with vocal fold paralysis
is created in the first experiment. Similarly, a dataset of 21 long-term feature
vectors from females diagnosed as normal and another 21 long-term feature
vectors from females diagnosed with vocal fold edema is collected in the second
experiment.

5 Experimental Results

The assessment of the classifiers studied in the paper was done by estimating
the probability of false alarm and the probability of detection using the just
described feature vectors and the leave-one-out (LOO) method. The probability



of detection Py is defined as

_ # correctly classified pathological samples

P, 15
d # pathological samples (15)
and the probability of false alarm Py is given by
# normal samples misclassified as pathological ones
Py = . (16)

# normal samples

where # stands for number. There is no difficulty in the application of the LOO
concept for long-term feature vectors. However, for frame-based feature vectors,
the LOO method that excludes just one feature vector associated to speaker S
leaves another Ng—1 feature vectors of this speaker in the design set, where Ng is
the number of feature vectors extracted from speaker S utterance. To guarantee
that the test set is comprised of totally unseen feature vectors (i.e. samples),
we apply the LOO method with respect to speakers and not the frame-based
samples. Then the test set is comprised by feature vectors of the same speaker
and a unique decision can be taken by assigning the test speaker to the class
where the majority of the test feature vectors is classified to.

5.1 Sample-Based Linear Parametric Classifier

It is worth noting that for the linear parametric classifier the aforementioned
probabilities of false alarm and detection are threshold-dependent. Accordingly,
a ROC curve can be derived by plotting the probability of detection versus the
probability of false alarm treating the threshold as an implicit parameter.

Vocal Fold Paralysis in Men

Frame-based feature vectors. Using the rectangular window and increments As =
0.01 Algorithm 1 yields the minimum total classification error 14.2857% for s =
0.19. The aforementioned classification error corresponds to a misclassification
of 1 out of 21 normal utterances and 5 out of 21 disordered speaker utterances.
The ROC curve is depicted in Figure la. Working in the same way with the
Hamming window, Algorithm 1 yields the minimum total classification error
for s = 0.4. However, in this case considerably more errors are committed in
recognizing the normal patterns. Figure 1b depicts the corresponding ROC curve.
By constraining the probability of false alarm at 10 %, the linear parametric
classifier yields a probability of detection slightly higher than that achieved by
the Fisher linear discriminant classifier [9].

Long-term feature vectors. If we design the classifier using the parameters derived
by the LOO method on the frame-based feature vectors in order to classify the
mean feature vectors per speaker, we obtain the ROC curve of Figure 1c, when
the rectangular window is used. We see that the two classes are now considerably
separable and we achieve a perfect classification for Py ~ 10% that corresponds
to 2 speakers. When the Hamming window is employed, the ROC curve plotted
in Figure 1d results.
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Fig. 1. Receiver operating characteristic curves of a linear parametric classifier designed
to detect vocal fold paralysis in men using: (a) frame-based features and the rectangular
window; (b) frame-based features and the Hamming window; (c) long-term feature
vectors and the rectangular window; (d) long-term feature vectors and the Hamming
window.

Vocal Fold Edema in Women

Frame-based feature vectors. Algorithm 1 yields the smallest total classification
error of 9.5238% for s = 0.92 that corresponds to misclassification of 4 disor-
dered speech utterances. Figure 2a depicts the ROC curve when the rectangular
window is used. By comparing the ROC curves plotted in Figures la and 2a
we notice that the classifier detects more efficiently vocal fold edema in women
than vocal fold paralysis in men. A much better performance is obtained when
the Hamming window replaces the rectangular one. The minimum classification
error is only 7.1429% for s = 0.84, corresponding to misclassification of one nor-
mal and two disordered speech utterances. Indeed, the ROC curve of Figure 2b
indicates a more accurate performance than that of Figure 2a. By constraining
the probability of false alarm at 10 %, the linear parametric classifier yields
a probability of detection 20% higher than that achieved by the Fisher linear
discriminant classifier [9].



Long-term feature vectors. By using the rectangular window we can achieve a
Py = 100% for a misclassification of only one normal utterance, as can be seen in
Figure 2c. The corresponding ROC is plotted in Figure 2d, when the Hamming
window is used with the mean feature vectors.

From the ROC curves of Figure 2c and 2d, we notice that no false alarm can
by obtained at the expense of only one misclassified disordered speech utterance.
By allowing for 2 misclassifications of the normal utterances, we can obtain a
perfect detection of vocal fold edema.
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Fig. 2. Receiver operating characteristic curves of a linear parametric classifier designed
to detect vocal fold edema in women using: (a) frame-based features and the rectangular
window; (b) frame-based features and the Hamming window; (c) long-term feature
vectors and the rectangular window; (d) long-term feature vectors and the Hamming
window.

Tables 1 and 2 summarize the performance of the parametric classifier when
frame-based features and long-term features are used, respectively.



Table 1. Performance of the parametric classifier for frame-based features (Fn stands
for normal speech errors - i.e. false alarms and Ep stands for disordered speech errors
- i.e. miss-detections).

Pathology|Window En Py Ep Py
Paralysis [Rectangular| 1 4.761905% 5 76.1905%
Paralysis |Hamming 1 4.761905% 5 76.1905%
Edema  |Rectangular| 0 0% 4 80.952381%
Edema |Hamming 1 4.761905% 2 90.47619%

Table 2. Performance of the parametric classifier for long-term features (En stands
for normal speech errors - i.e. false alarms and Ep stands for disordered speech errors
- i.e. miss-detections).

Pathology|Window En Py Ep Py
Paralysis |Rectangular 0% 8 61.90476%
Paralysis |Rectangular 9.52381% O 100%
Paralysis |Hamming 0% 6 71.4286%

Paralysis |Hamming 14.2857% 0O 100%
Edema |Rectangular 0% 1 95.2381%
Edema  |Rectangular 4.761905% 0 100%
Edema |Hamming 0% 1 95.2381%

N O = O WoNO

Edema |Hamming 9.52381% O 100%

5.2 Dual Space Linear Discriminant Classifier

Before applying the dual space linear discriminant classifier (Algorithm 2) to
either frame-based or long-term feature vectors, we must note the following:

— We are interested in a two class problem, hence L = 2.

— Considering the ratio of the largest to the smallest eigenvalue of 5, in either
case, we found that it was of the order of 10% or larger. For this reason, we
shall consider as null subspaces the ones defined by eigenvectors associated
with eigenvalues that are ten times larger than the smallest eigenvalue at
most. Sy, is a full rank matrix in any case. Thus, we obtain K = 12 and
hence the dimension of the null subspace of S, is equal to 2.

— In our case, Sp is a rank 1 matrix. Therefore, [p,lc > 1 does not make any
sense and we choose that [p =1lc = 1.

— The probabilities of detection and false alarm are not threshold-dependent.
Accordingly, the classifier operates at a single point and no ROC curve is
obtained.

Having clarified the above, we applied the dual space linear discriminant
classifier to the detection of vocal fold paralysis in men and vocal fold edema in
women. The results are summarized in Tables 3 and 4.

From the cross-examination of either Tables 1 and 3 or Tables 2 and 4, we
conclude that the parametric classifier is more accurate than the dual space



Table 3. Dual space linear discriminant classifier applied to frame-based feature vectors
(En stands for normal speech errors - i.e. false alarms and Ep stands for disordered
speech errors - i.e. miss-detections).

Pathology|Window En Py Ep Py
Paralysis [Rectangular| 1 4.761905% 7 66.6667%
Paralysis |Hamming 2 9.52381% 8 61.90476%
Edema  |Rectangular| 1 4.761905% 7 66.6667%
Edema |Hamming 5 23.80952% 4 80.952381%

Table 4. Dual space linear discriminant classifier applied to long-term feature vectors
((En stands for normal speech errors - i.e. false alarms and Ep stands for disordered
speech errors - i.e. miss-detections).

Pathology|Window En Py Ep Py
Paralysis [Rectangular| 2 9.52381% 7  66.6667%
Paralysis |Hamming 2 9.52381% 8 61.90476%
1
4

Edema  |Rectangular 4.761905% 4 80.952381%
Edema Hamming 19.04762% 4 80.952381%

linear discriminant classifier. For vocal fold paralysis, the use of the rectangular
window yields better results than the use of the Hamming window. The opposite
is true for vocal fold edema.

6 Conclusions

Two linear classifiers, namely the sample-based linear classifier and the dual
space linear discriminant classifier have been designed for vocal fold paralysis
detection in men and vocal fold edema detection in women. The experimental
results indicate that the sample-based linear classifier achieves better results
than the dual space linear discriminant classifier.
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