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ABSTRACT

In this paper a modified class of Support Vector Machine
(SVM) ingpired from the optimization of Fisher’s discrimi-
nant ratio 1s presented. The modified class of SVM 1s used in
order to find decision surfaces by solving the corresponding
optimization problem in arbitrary Hilbert spaces, defined by
Mercer’s kernels. The effectiveness of the proposed approach
is demonstrated by comparing it with the maximum margin
SVM in various experiments using artificial data. Moreover,
we have applied the proposed approach in the recognition of
neutral expression in facial images.

Index Terms— Support Vector Machines, linear discrim-
inant analysis, facial expression recognition, kernel machines.

1. INTRODUCTION

Pattern recognition systems employing SVM [1] have drawn
much attention due to their good performance in practical ap-
plications and their solid theoretical foundations. The prop-
erty that distinguishes SVM from other nonparametric tech-
niques, like nearest-neighbor classification or neural networks,
1s that it is based on structural risk minimization. Typical pat-
tern recognition methods attempt to minimize the misclassifi-
cation errors on the training set (empirical risk minimization).
Instead, SVM minimize the structural risk, that is the proba-
bility of misclassifying a previously unseen data point drawn
randomly from a fixed but unknown probability distribution.
If the Vapnik-Chervonenkis (VC)-dimension [1] of the fam-
ily of decision surfaces is known, the theory of SVM provides
an upper bound for the probability of misclassification of the
test set for any possible probability distributions of the data
points [1]. The main reason that made SVM so popular is that
they consist of quadratic optimization problems which can be
solved very efficiently and it is guaranteed that they will find
a global extremum.

Another aspect of SVM 1s that they can be used in order to
construct non-linear decision surfaces. In order to find such
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surfaces, a non-linear function ¢ is firstly used in order to
project the samples to a very high dimensional feature space,
the so-called Hilbert space, where the vectors are linearly or
near-linearly separable and a maximum margin hyperplane is
found. The decision surface can be found without having to
compute explicitly the mapping ¢, but by only computing dot
products in the Hilbert space by means of the so-called kernel
trick [2], as long as the mapping ¢ satisfies the Mercer’s con-
ditions [3]. The interested reader may refer to [4] for details
on the geometry of Hilbert spaces (also referred as feature
spaces).

In [3] a unified framework in terms of a nonhnearized
variant of the Ravleigh coefficients has been proposed and
has been applied in order to formulate nonlinear generaliza-
tions of Fishers Discriminant Analysis and oriented PCA with
kernel functions. In order to overcome the fact that both cal-
culation and eigenanalysis of covariance matrices in arbitrary
dimensional Hilbert spaces are generally ill-posed problems,
regularization parameters have been incorporated in the opti-
mization problem.

An effort to combine the Fisher’s discriminant optimiza-
tion problem [6] and SVM formulation has been done 1n [7],
where a modified class of SVMs has been constructed. In de-
tail, motivated by the fact that the Fisher’s discriminant opti-
mization problem for two classes 1s a constraint least-squares
optimization problem [7, 8, 9], the problem of minimizing the
within-class variance has been reformulated, so that it can be
solved by constructing the optimal separating hyperplane for
both separable and nonseparable cases. In the face venfica-
tion problem, the modified class of SVM has been applied
successfully in order to weight the local similarity value of
the elastic graphs nodes according to their corresponding dis-
criminant power for frontal face verification [7]. It has been
shown that it outperforms the maximum margin SVM [7].

In [7], only the linear SVM case with the assumption that
the number of training vectors 1s larger than the feature di-
mensionality has been considered (i.e., when the within scat-
ter matrix of the samples is not singular). In this paper the
modified class of SVM 1s extended in arbitrary dimensional
dot product Hilbert spaces, in order to define decision surfaces
using Mercer’s kernels. We will show, using both artificial
and real data, that the proposed SVM method can outperform



maximum margin SVM.

2. DECISION HYPERPLANES AND SURFACES

Let a training set with finite number of elements

U = {(xi,5:),% € {1,..., N}}, be separated into two dif-
ferent classes Cx and C,, with training samples x; ¢ ® and
labels y; € {1, —1}. The cardinalities of Cf, and C; are N (Cy)
and N{C;), respectively. The simplest way to separate these
classes is by finding a separating hyperplane:

wix—b=10 (1)

where w ¢ R is the normal vector of the hyperplane and
b € R 1s the corresponding scalar term of the hyperplane, also
known as bias term [7]. The decision whether a test sample x
belongs to one of the different classes Cy and C; is taken by
using the linear decision function gy, 5 (x) = sign(w?x — &),
also known as canonical decision hyperplane [1].

In cases that the samples are not linearly separable, we
would like to find more complex decision functions. To do
50, we use a non-linear mapping ¢ : R — H that maps
the training samples to the arbitrary dimensional feature space
‘H. In that space the training samples are linearly or near-
linearly separable. Hence, a hyperplane can be found in H {(a
hyperplane in { corresponds to a surface in R*) as:

wlg(x) b=0 @)

and the corresponding canonical decision function is gw 5 (%) =

sign{wT ¢(x)—b). In this paper we will define novel decision
surfaces, using mappings ¢ that satisfy the Mercer’s condition
[1]. Tt is worth noting here that the hyperplanes in R* are a
special case of hyperplanes in H, when using the mapping

P(x) =x.
3. THE NOVEL CLASS OF DECISION SURFACES

In [7], inspired by the maximization of the Fisher’s discrimi-
nant ratio, which requires the minimization of the within class
variance, and the SVM separability constraints, a modified
class of SVM has been introduced. The optimization prob-
lem is defined as:

mingsww, wl8,w >0 (3)

subject to the separability constraints:
wwix;—b)>1, i=1,...,N 4

where the matrix S, 1s the within class scatter matrix defined

as:
Sw = erct (X - mcf)(x - mCt)T+

T &)

+ erck (X - mck)(x - mck) 3

mg, and mg, are the mean sample vectors for the classes Cy,
and C, respectively.

In [7] only the linear case has been considered (the de-
cision surfaces proposed in [7] are not the the generalization
of (3) subject to the constraints (4) in Hilbert spaces). In the
following, the optimization problem that has as outcome the
proposed decision surfaces will be defined and solved. These
decision surfaces are derived from the minimization of the
within class variance in a dot product Hilbert space H subject
to separability constraints. The space H will be called feature
space while the original R space will be called input space.
In the space H the within scatter is defined as:

ST = Txee, (d(x) - mét)(dﬁ(X) - m%)i ©
+ 2 xee, (P(x) — Mg, ) ($(x) —mg, )"
where ma = ﬁ@) Y oxec, $(x)and
md = @ > xec, (%) are the mean sample vectors in

H for the classes Cy and C;, respectively. The optimization
problem of the modified SVM approach (in soft margin for-
mulation [10]) consists of finding a vector w € H such that:

N
min wiSiw + C> &, wiSiw >0 (7N

w,b, =1
subject to the constraints:

where & = [£1,...,&y] is the vector of the non-negative slack
variables and (' is a given constant that defines the cost of the
errors after the classification. The solution of the minimiza-
tion of (7}, subject to the constraints (8), is given by the saddle
point of the Lagrangian:

L{w,b,a,r,é§) = wisew 4 ng\;l £—
Zi}vai[yi(WTcﬁ(Xi) — b —1+&]
- Zi=1 'f"zfz‘
9
where a = [ay,...,an]7 andr = [ry,...,7n]7 are the vec-

tors of the Lagrangian multipliers for the constraints (8). The
Karush-Kuhn-Tucker (KKT) conditions [11] imply that for
the optimal choice of w,a,r, b, £ the following hold:

VWL‘W:WD =0 S?;Wo == % Ef\il a‘i,oyiqs(xi)

a
Slpmp, =0 aly =0

arL
ag,

g=t.,, =08 1o =C—aip
Ti0 >0,0< Gi0 < Ei,o =0, Ti,ogi,o =0

yz(Wgﬁﬁ(Xz) - bo) -1+ gz',o =0

az’,o{yi(wgé(xi) —by) = 14&,} =0
(10)
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the subscript o denotes the optimal case and ¥y = [v1,. .., yn]
1s the vector denoting the class labels. Since the feature space
is of arbitrary dimension the matrix 82 is almost always sin-
gular. Thus, the optimal normal vector w, cannot be directly
found from the KKT conditions (10):

N
1
Stw, = 5 E 5,04 P (Xy). (11)
=1

In this paper a solution of the optimization problem (7)
subject to the separability constraints (8) will be described
without having to assume that the within scatter matrix of the
training data is invertible neither in the feature space nor in
the input space. It will be proven that there is a solution to
this optimization problem by proving that there is a mapping
that makes the solution feasible. This mapping is the Kernel
FPrincipal Component Analysis (KPCA) transform [12].

Let us define the total scatter matrix 8% in the feature
space H as:

N

8T = (¢(x:) — m®)((xs) —m®)T,

i=1

(12)

where m? = 3" ¢x. The matrix S? is bounded, compact,
positive and self-adjoint operator in the Hilbert space H. Thus,
according to the Hilbert-Schmidt Theorem [13, 14] its eigen-
vectors system is an orthonormal basis of H. Let BY and
B? be the complementary spaces spanned by the orthonor-
mal eigenvectors of ST that correspond to non-zero eigenval-
ues and to zero eigenvalues, respectively. Thus, any arbitrary
vector w € H, can be uniquely represented as w = @ + ¢
with ¢ € B and ¢ € BY [14].
Let us define the linear mapping L? : H — B? as:

(13)

The following Theorem shows that the optimization of the (7)
subject to the constraints (8) can be performed in the space B2
instead of H without losing any information.

Theorem. Under the mapping L® the optimization prob-
lems (7) subject to the constraints (8) is equivalent to:

wW=¢+{p

N
iy PTSTe+C> & (¢S >0), peBY (14
b, i=1

subject to the constraints:

p B0

(15)

The proof of the above Theorem is omitted due to lack of
space.

The optimal decision surface for the optimization problem
(7) subject to the constraints (8) can be found in the reduced

space BY spanned by the non-zero eigenvectors of ST, The
number of the non-zero eigenvectors of 8F is K < N — 1
thus, the dimensionality of B2 is K < N — 1 and according
to the functional analysis theory [15] the space B® is isomor-
phic to the (N — 1)-dimensional Euclidean space RV 1. The
isomorphic mapping is:

=Py, neR" Y (16)

where P is the matrix with columns the eigenvectors of SF
that correspond to non-null eigenvalues and 1s an one-to-one
mapping from RY—1 onto B.

Under this mapping the optimization problem is reformu-
lated as:

N
min N 8m+CY & n"Syn>0,neRV T (7
LS i=1

where 8., is the within scatter matrix of the projected vectors
in RV~ given by §,, = PYS2P (KPCA transform). The
equivalent separability constraints are:

y R —b) > 1-&
20, i=1,...,N, neRi-1

(18)

where X; = P7$(x;) are the projected vectors in RV 1 us-
ing the KPCA transform. For details on calculation of the
projections using the KPCA transform someone may refer to
[12, 14]. Under the projection to KPCA mapping, the optimal
decision surface for the optimization problem (14) subject to
(15) in 'H can be found by solving the optimization problem
(17) subject to (18) in RV—1 and then moving to H using
(16).

The solution of the optimization problem (17) subject to
the constraint (18) is found by the saddle point of the follow-
ing Lagrangian:

L(nrbrarrv 5) :nT]\Swn‘I“ngil 5:',7
- 2?1 &i[yi(nTii —b) —1+&—
*Ez’: riés
1 19

the KKT conditions are similar to the ones in (10). Thus, the
optimal vector 1s given by:

N
~ 1 ~
Sw‘l‘]o = 5 E aisoyixi. (20)
=1

The problem here is that the matrix S,, may be still singular.
But, if the matrix S, is singular it contains only one eigen-
vector that corresponds to null eigenvalue.

3.1. The matrix S, is singular

In order to find the decision surface for the case of S, being
singular, we proceed as follows. Let & be the matrix with
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columns the N — 2 non-null eigenvectors of S,,. In order to
find the decision surface in this case the training samples are
projected to ©. Let S, be the within class scatter matrix of
the projected samples in RV 2 givenby 8, = ©78,8. The

optimal normal vector v, in R 2 of the hyperplane is given
by:
1 . 1 N
SuYo = 9 Eai,oyifi =Y = 5551 Z&i,oyi)u(i- (21)
i=1 i=1

By replacing (21) to (19) and using the KKT conditions (10),
the constraint optimization problem (17) subject to the con-
straints (18) 1s reformulated to the Wolfe dual problem:

1 .
max f(a) = 1%a— §aTQa subject to (22)
0<a;<C,i=1,....,N, aTy =0
where 15 is a N dimensional vector of cnes and [Q]; ; =

%yiyj)“(gnsuwfl)“{j. The corresponding optimal normal vector
that 1s derived from the optimization problem {17) subject to
the constraints (18) is 17, = ©-,. The decision surface is
given by:

0(x) = sien(wTb(x) — bo) = sien(T5(x) — by) =
= sign(n) PT¢(x) — bo)
= sign(v] OTPT(x) — b,) =
= sign(% Zi\;l aisoyiqﬁ(xi)TP(:)g;1(:)TPT¢(X)—
_bo)

(23)

The optimal threshold b, can be found by exploiting the

fact that for all support vectors %; with O < a;, < C, their

corresponding slack variables are zero (KIKT condition). Thus,

for any support vector X; withi € § = {i: 0 < a; < C} the
following holds:

24)

Averaging over these patterns vields a numerically stable so-
lution:

N
1 1 T 1
bo = W ;(5 ;yjaj’oxj Sw X; — y:',) (25)

Summarizing, the training phase includes an mitial pro-
jection to RV—1 using the KPCA transform. The training
samples are accordingly projected to RY 2 using ©. Then,
the SVM optimization problem is solved in this space where
S,, is invertible. Tn the test phase, when a test vector arrives
for classification, it should be first projected to RN 2 by us-

ing the above procedure and finally classified using (23).

4. EXPERIMENTAL RESULTS

4.1. Experimental Results with Artificial Data

Several kemels have been used in the expeniments and the
parameter ' in (7) has been set to infinity so that no training
errors were allowed. The typical kernels that have been used
in our experiments have been polynomial and Radial Basis
Functions (RBF) kernels:

k(x,¥) = d(x)T d(y) = (xy +1)°
k(x,y) = ¢(x)Td(y) = e 73Ty

(26)

where d is the degree of the polynomial and - is the spread of
the Gaussian cluster.

Artificial data have been used in order to show that the
proposed decision hypeplanes and surfaces are not so sen-
sitive to outliers as the ones defined by the maximum mar-
gin SVM approach. A comparison of the linear maximum
margin SVM against the linear modified SVM (case where
#(x) = x) in the separable case is shown in Figure 1. The
advantage of the modified SVM method is that it takes into
account both the class distribution statistics and the vectors
that are in the boundaries, in contrast to the maximum margin
SVM that considers only the vectors that lie in the boundaries.

In case of a non-linear decision surface the suitability of
the proposed approach against the maximum margin SVM
can be seen in Figure 2. The SVM approach totally failed to
capture the nonlinearity of the data (Figure 2a). On the other
hand the proposed decision surface has successfully captured
the underlying non-linearity of the data (Figure 2b).

4.2. Neutral Facial Expression Detection using Cohn- Kanade

database

This experiment illustrates the application of the proposed
technique to the neutral facial expression detection problem.
The recognition of the neutral facial expression can be also
used to assist face verification algorithms [16], that, in gen-
eral, are sensitive to the change of facial expressions and ask
the client to have a neutral facial expression when using the
verification system.

The Cohn-Kanade database [17] was used for the facial
expression recognition in 6 basic facial expressions (anger,
disgust, fear, happiness, sadness and surprise) classes. This
database, 1s anottated with Facial Action Units (FAUs) [18].
These combinations of FAUs were translated into facial ex-
pressions according to [ 18], in order to define the correspond-
ing ground truth for the facial expressions. In order to form
the dataset to be used for the experiments, every image se-
quence available was taken under consideration, for every
subject (96 subjects in total). One image for the neutral state
and one image for the fully intensed facial expression were
chosen from each image sequence (first and last frame of the
image sequence respectively). Not all six facial expressions

444



support vector

support vector

support vector,

(b)

Fig. 1. a) The maximum margin SVM hyperplane; b) the proposed SVM hypeplane.
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Fig. 2. The optimal decision surface using second order polynomial kernel and (a) maximum margin SVM, (b) the proposed

SVM.

were present for every subject. For example a subject may
have three video sequences posing happiness and none pos-
ing sadness, thus creating 3 samples for the happiness facial
expression and 3 samples for the neutral facial expression,
but none for the sadness facial expression. The chosen im-
ages were used to build the database, consisting of 704 images
(equal number of samples for the neutral and fully expressive
images). In Figure 3, a sample of image sequences of one
poser from this database, is shown.

From the total of 704 “face-prints™ of the Cohn-Kanade
database the 352 are neutral facial images while the remain-
ing 352 are expressive images. The average size of the train-
ing set has been 564 facial images (282 expressive and 282
neutral images) and the average size of the test set has been
141 images (70.5 neutral and 70.5 expressive images).

'

Neutral ~ Anger  Disgust Fear Happiness Sadness Surprise

Fig. 3. Neutral Vs Expressive Images of a poser of Kanade
database

Table 1. The best error rates of the tested classifiers for neu-
tral state detection.

Algorithm Overall Error Rate%
MVSVMs with 4-th degree polynomial kernel 6
SVMs with 4-th degree polynomial kernel 7.9
Regular CKFDA 4-th degree polynomial kernel 14

Figure 4 shows the results of the various tested approaches,
1.c., a Kernel Fisher’s Discriminant algorithm (the so-called
Complete Kernel Fsher’s Discriminant Analysis (CKFDA)[14]),
SVMs, and the Modified Version of SVMs (MVSVMs), pro-
posed in this paper, for the polynomial kernel and for various
degrees. As can be seen MVSVMs approach is constantly
better than SVMs and CKFDA for all the tested polynomial
kernels. The lowest error rates are summarized in Table 1.

5. CONCLUSION

A novel class of decision surfaces inspired from the Fisher’s
discriminant ratio and SVM has been proposed. The advan-
tage of the proposed technique is that they consider the class
distribution statistics and not only the samples in the class
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Fig. 4. Experimental results for neutral detection determina-
tion using polynomial kemnel with various degrees.

boundaries. The demonstrated experiments have shown that
the proposed class of decision surfaces can overcome some of
the problems of the maximum margin SVM. Further research
includes the theoretical investigation of the generalization ca-
pability of the proposed class of SVM.
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