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ABSTRACT mation is NMF [2]. The NMF algorithm, like PCA, repre-
sents a face as a linear combination of basis. The difference
with PCA is that it does not allow negative elements in both
the basis vectors and the weights of the linear combination.
This constraint results to radically different basis th&»AP

On the one hand the basis of PCA are eigenfaces, some of
which resemble distorted versions of the entire face. On
the other hand the basis of NMF are localized features that
correspond better to the intuitive notions of face parts [2]

n extension of NMF that gives even more localized basis
by imposing additional locality constraints is the so-edll
LNMF [3].

In this paper, we develop a technique for exploiting dis-
1. INTRODUCTION criminant information in NMF. This technique uses the NMF

E ition/verification h dth ntib basis images in order to discover a low dimensional space
ace recognition/verification has attracted the attendlon 54 gearch for discriminant projections in this space. This

researchers for more than two decgdes and is amon.g.th% similar to Fisherfaces [4, 5], where an initial PCA based
most popular resegr_ch areas in the field of computer V'S'Ondimensionality reduction step is used, before applying LDA
and pattern recognition. in this new space for finding discriminant projections. Of

The most popular among the techniques used for frontal .\ e the motivations of Fisherfaces and the proposed NMF
face recognition/verification are the subspace methods. Th glus LDA are different. In Fisherfaces. first PCA is used in

subspace algo_rithms.consi.der the_ enFire image as a featur rder to satisfy the invertibility of the within scatter ma-
vector and their aim is to find projections (bases) that op- trix and afterwards LDA is used in this new space. In the

timize some critgrion defined over the featurfa .vecto.rs th"_"tproposed NMF plus LDA method LDA is used along with
correspond to different classes. Then the original high di- N\ i order to investigate whether there is any discrim-
mensional image space is projected into a low dImenSIOnalinant information in part-based decompositions, like NMF.

one. The classification is usually performed according to aThe proposed method has been tested for frontal face veri-
simple distance measure in the final multidimensional SPacesication using the XM2VTS database

Various criteria have been employed in order to find the
basis of the low dimensional spaces. Some of them have
been defined in order to find projections that they best ex- 2. FRONTAL FACE VERIFICATION AND
press the population (e.gPrincipal Component Analysis SUBSPACE TECHNIQUES
(PCA) [1], NMF [2], Local Non-negative Matrix Factor-
ization (LNMF) [3]) without using the information of how  In this Section, we will briefly outline the problem of frohta
the data are separated to different classes. Another clas&ce verification and the framework under which a subspace
of criteria is the one that deals directly with discrimimati ~ Method can be used in order to solve this problem.
between classes (e.g. LDA [4]). Let U/ be a facial image database. Each facial image
A subspace method that aims at finding a face repre-x € U is supposed to belong to one of thefacial (person)
sentation by using basis images without using class infor-classes{iy, Us, ... . Ux } with U = |J;-, U;. For a face
This work is funded by the integrated project BioSec IST200 ve_:rificatio_n S-yStem that uses the datablaseg gen_uine (-Or
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In this paper, a novel supervised feature extraction method
is presented. The method employs discriminant analysis in
the features derived bijon-negative Matrix Factorization
(NMF). In this way, a two phase discriminant feature extrac-
tion procedure is implemented, namely NMF plisear
Discriminant Analysis (LDA). The introduced method has
been applied to the problem of frontal face verification us-
ing the well known XM2VTS database, where a better per-
formance than NMF, Eigenfaces and Fisherfaces has bee
achieved.




r, an impostor claim occurs. The scope of a face verification By using an auxiliary function and the Expectation Maxi-

system is to handle properly these claims by accepting themization algorithm [7], the following update rules fay, ;

genuine claims and rejecting the impostor ones. and z; , guarantee a non increasing behavior of (3). The
Let the facial image databasébe comprised by, fa- update rule for the-th iteration forky, ; is given by:

cial imagesx; € Rf, whereR; = [0, +o00) and let the

L . . (t=1) iy
cardinality of each_famal clasw,,_ t(_) be 1\_77~- A I_mear sub- ® (t—1) i%ik W
space transformation of the original-dimensional space by =Ty 1 (5)
onto aM -dimensional subspace (usually <« F)is a ma- 2 %k

trix W ¢ %]MXF estimated USing the databdge The new whereas for thel k the update rule is given by
feature vectok € RM is given by: ’

(t) i
£= W W L _ ey ST ©
ik T ik t
The rows of the matriXW contain the basis of the lower Zj hl(c)]

dimension feature space.
After the projection given by (1), a distance metric is
chosen in order to measure the similarity of a test facial im-

age to a certain class. This similarity measure can bé the ing singular value decomposition methods [8, 9]. In order

Eolrm, tgeLdQ. ?Orm’ tge Inormahz??l correliyor;'or t?he Mla- to proceed to the dimensionality reduction, it has been also
alanobis distance [6]. In case of face verification, thealg claimed thatZ” can be used as an alternative [10], due to

_rithm should also learn _athresh_old on the simila_rity MEASUT the fact that the calculation @ may suffer from numerical
in order to accept or reject a client/impostor claim. instability.
In any case, we can not use the coefficient matri¥iof
3. THE NMF ALGORITHM computed directly from (5) (which gives us its values in the
training phase), since we do not have any expression for
calculating this representation for the test images.

Sincex; ~ Zh;, a natural way to compute the projec-
tion of x; to a lower dimensional feature space using NMF
isx; = Z'x;. The pseudo-inversé’ can be calculated us-

In order to apply NMF, the matriX € R*F = [z; ;]
should be constructed, whete; is thei-th element of the
j-th image. In other words thgth column ofX is theu;
facial image. NMF aims to find two matric@se R} = 4. NMF PLUS LDA

[2i,] andH € RY*" = [hy ;] such that, The previously presented method, NMF, does not use the
X ~ ZH. 2) information about how the various facial images are sepa-

rated into different facial classes. The most straightfoov

way in order to exploit discriminant information in NMF

is to try to discover discriminant projections for the fdcia

Thus, the lines of the matri% can be considered as basis image vectors after the projection to the basis image matrix
images and the vectdr; as the corresponding weight vec- 7+ | ot the matrixX that contains all the facial images of

tor. Theh; vectors can also be considered as the projectedy,q databasg/, be organized as follows. Theth column

vectors of a lower dimensional feature space. of the databasX is the p-th image of the-th class. Thus,
The NMF imposes non-negative constraints in both thej _ Er—l Ni+p
- =1 ? .

elements ofz; ;, and of hy ;. Thus, only non-subtractive

combinations are allowed. This is believed to correspond p\4¢ix 1, is the coefficient vector for theth facial image of
better to the intuitive notion of combining facial parts in

; r) _ (1) (r) qT
order to create a complete face. therth class and will be denoted ?)é =1 nij] .
One of the algorithms initially proposed for finding the The mean vector of the vectorg, for the class is de-
matricesZ andH used the following metric: noted agu” = [u{" ... u{")]7 and the mean of all classes

T asp = [p1 ... pas)T. Then, the within scatter for the coef-
Dy (X||ZH) = (i, 1n(72l po jhl - )+ zikhik;=Ti5)  ficient vectorsh; is defined as:
7 v k

The facial imageu; after the NMF decomposition can be
written asu; ~ Zh;, whereh; is the j-th column of H.

The vectorh; that correspond to thgth column of the

(3) K N,
as the measure of the cost for factoriXgnto ZH [7]. Sw = Z Z(nﬁf) — )@l — pHT (@)
The NMF factorization is the outcome of optimization : r=1p=1
min Dy (X||ZH) subject to (4)  Whereas the between scatter matrix is defined as:
Z H

K
2k 20, by >0, )z =1, V) Sy =Y Ne(p = p)(p) = )" 8)
i r=1



The matrixS,, defines the scatter of sample vector coef- matrix IT whose columns are the orthonormal eigenvectors
ficients around their class mean. The dispersion of samplesof S, that correspond to its non-zero eigenvalues. In order
that belong to the same class around their correspondingo find the non-zero eigenvectors 8f efficiently, we can
mean should be as small as possible. A convenient met-use algorithms like [15].
ric for the dispersion of the samples is the trac8gf The Let S’w and S, be the within scatter and the between
matrix, S, denotes the between-class scatter matrix and de-scatter matrices in the spa¢e These matrices are given
fines the scatter of the mean vectors of all classes arounduy Sw = I17S,II and bySb = II7S,II . In the space
the global mean. Each class formed by the samples that © the matrix$,, is still singular. Let=, and =, be the
belong to the same class must be as far as possible fromorthonormal eigenvectors that correspond to non-zero and
the other classes. Therefore, the tracéSpfshould be as  to zero eigenvectors of the mati,, respectively.

large as possible. By taking into consideration the previ- In the space spanned by the vectors containeg-in
ous remarks, the well known Fisher discriminant criterion the discriminant projections are given by the columns of
is constructed as: the matrix®, that are the eigenvectors étujléb, where
(7S, T S, = 27S,,E, andS, = ETS,=;. In the space that is
J(¥) = SR 9) spanned by the columns &, it can be easily proven that
tr[e7”S,, ¥ S, = ET'S,E, is not singular [14]. Thus, the discriminant

where tfR] is the trace of the matriR. The maximization projections in this space are given by the ma@ixthat has

of J yields a set of discriminant projections that is given as (Erorllur?ns thet orth]f)norThalte|g<tanv?ctt(?1r§g1f lar discrimi
by the columns of the matrid® — [¢b, ... %, If S, e linear transform that extracts the regular discrimi-

is invertible then the projection matri¥ is given by the nantfeatures using NMF is:
generalized eigenvectors 8f,'S;,. b, — eT=T’z, (12)
There is not upper limit for how many basis someone
can construct using NMF decomposition in (6) and unless whereas, the linear transform that extracts the irreguiar d
we create a limited number of basis by NMF the ma$ix criminant features using NMF is:
is singular. That is, there always exist vectgrshat satisfy
oIS, ¢, = 0. These vectors turn out to be very effective if b, = el=In"z (13)
they satisfyp; S,¢; > 0 at the same time [11, 12]-[14]. In
that case the Fisher discriminant criterion degenerates in WhereZ is the decomposition of NMF given by (6). The to-
the following between-class scatter criterion: tal number of discriminant projections derived by this pro-
cedure i2(K —1).
Jo(®) = r[@TS,®] (@ =[...¢;.. ], [|¢;]| = 1). (10)
We will use the main results of [14] in order to extract 5. EXPERIMENTAL RESULTS
discriminant features using an arbitrary number of NMF ba-
sis. The discriminant features are then extracted by the min
imization of the criterions (9) and (10). The discriminant
projections that are derived by the (9) will be calledular
discriminant projections (or regular NMFfaces) while the
ones created by (10) will be callédregular discriminant
projections (or irregular NMFfaces).

Let the total scatter matrix of the feature vectbrsbe
defined as: 5.1. Training Procedure

St =8Suw+S, (11) The XM2VTS database provides two experiment setups namely,
it is easy to prove that the matrd is a compact and self-  Configuration | and Configuration Il [16]. Each configura-
adjoint operator iR [14]. Thus, its eigenvector system tion is divided in three different sets the training set, the
forms an orthonormal basis fé&t" [14]. evaluation set and the test set. The training set is used to

Let© andO+ be the two complementary spaces spannedcreate client and impostor models for each person. The eval-
by the orthonormal eigenvectors that correspond to no-zerouation is used to learn the thresholds.
and to zero eigenvalues &, respectively. It is easy to The training set of the Configuration | contains 200 per-
prove, using the theory developed in [14], tiat does not  sons with 3 images per person. The evaluation set con-
contain any discriminant information in respect to the cri- tains3 images per client for genuine claims afdl eval-
terion (9) and (10). The isomorphic mapping in order to uation impostors witt8 images per impostor. Thus, eval-
move from the feature space of the vecthrsto O is the uation set gives a total df x 200 = 600 client claims

The experiments were conducted in the XM2VTS database
using the protocol described in [16]. The images were atigne
semi-automatically according to the eyes position of each
facial image using the eye coordinates. The facial images
were down-scaled t64 x 64 resolution. Histogram equal-
ization was used for normalizing the facial images.



wherex,. andx; are the reference and the test facial image,
respectively whilex,. andx; are their projections to one of
the subspace.

In case of NMF plus LDA two different discriminant
projection are found by (12) and (13). Thus, two different

T
similarity values are created Wy, (x,, x;) (g, ) (301

D T T T ]
and by D, (x,,x;) = % for the regular and

the irregular discriminant information, respectively.[14]
it has been proposed to use a simple fusion technique by
weighting the irregular score with some empirical coeffi-
cient. Instead of using the empirical parameter we used
| the evaluation set of the Configuration | in order to learn
' a discriminant weighting vectox using also LDA. The fi-

nal similarity measure between the facial image veckgrs

HH andx; is given by:

Dy (x,,x,) = WT[DQ(XT,Xt) Du(xr,xt)]T. (15)

The similarity measures for each person, calculated in
both evaluation and training set form the distance vector
d(r). The elements of the vectat(r) are sorted in de-
scending order and are used for the person specific thresh-

p_0lds on the distance measure. [[gf(r) denote the)-th or-
der statistic of the vector of distancel,). The threshold
of the persomr is chosen to be equal th,(r). Letx}, x?

r

andx? be the 3 instances of the persoim the training set.

and 25 x 8 x 200 = 40.000 impostor claims. The test A claim of a person (with a facial image;) to the identity
set has images per client and) impostors with8 images 7 is considered valid ifnax; { D(x],x;)} < Tg(r). Obvi-
per impostor and give8 x 200 = 400 client claims and ~ ously when varyingy), different pairs ofFalse Acceptance
70 x 8 x 200 = 112.000 impostor claims. The maximum  Rate (FAR) andFalse Rejection Rate (FRR) can be created
number of Eigenfaces [15] given by the training set is 599. and that way a ROC curve is produced andEgal Error
The number of classes is 200 and, thus, the number of Fish-Rate (EER) can be measured [16, 17].
erfaces [4] is 199. For NMF plus LDA, 1000 basis images The performance of the methods that project to face
have been created initially using NMF and after the regular basis like Eigenfaces, Fisherfaces and NMFfaces (regular
and irregular discriminant information has been found ac- and irregular) for various feature dimensions is illustcht
cording to (12) and (13) that gives a total of 398 projections in Figure 2. The best EER achieved was% when 80
(199 regular NMFfaces and 199 irregular NMFfaces). regular and 80 irregular projections have been kept. The

By a visual inspection of the images of Figure 1, it can best EER for Fisherfaces has beeé%s and for Eigenfaces
be seen that Eigenfaces, Fisherfaces and regular NMFface$.3%. The best EER achieved for NMF was more tiséf,
(it also holds for the irregular) resemble degraded vession thus, a separate curve showing the performance of NMF for
of faces. various feature dimensions was not included in Figure 2.

Fig. 1. A set of 25 basis images for (a) NMF
(b) EigenFaces, (c) FisherFaces (d) the proposed NM
Faces (regular).

6. CONCLUSIONS

5.2. Experimental Results in Configuration | We proposed a supervised feature extraction technique in

The facial images have been then projected using these ba2rder to improve the classification performance of NMF.
sis into a low dimensional feature space and the normalized! "€ discriminant technique gives basis images that are-holi

correlation was used in order to define the similarity mea- tc @nd is comprised of two different phases, namely NMF
sure between two faces as: and LDA thus producing the so-called NMFfaces. The new

subspace technique has been applied to frontal face verifi-
xI'%, cation, where, it was verified that the proposed NMFfaces

D(xr, %) = R (14) outperform the well-known Fisherfaces and Eigenfaces.
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