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Abstract. In this paper, a supervised feature extraction method having both non-
negative bases and weights is proposed. The idea is to extend theNon-negative
Matrix Factorization(NMF) algorithm in order to extract features that enforce not
only the spatial locality, but also the separability between classes in a discriminant
manner. The proposed method incorporates discriminant constraints inside the
NMF decomposition in a class specific manner. Thus, a decomposition of aface
to its discriminant parts is obtained and new update rules for both the weights
and the basis images are derived. The introduced methods have been applied to
the problem of frontal face verification using the well known XM2VTS database.
The proposed algorithm greatly enhance the performance of NMF for frontal face
verification.

1 Introduction

Face recognition/verification has attracted the attentionof researchers for more than two
decades and is among the most popular research areas in the field of computer vision
and pattern recognition. The most popular among the techniques used for frontal face
recognition/verification are the subspace methods. The subspace algorithms consider
the entire image as a feature vector and their aim is to find projections (bases) that opti-
mize some criterion defined over the feature vectors that correspond to different classes.
Then the original high dimensional image space is projectedinto a low dimensional one.
The classification is usually performed according to a simple distance measure in the
final multidimensional space.

Various criteria have been employed in order to find the basesof the low dimen-
sional spaces. Some of them have been defined in order to find projections that best
express the population (e.g.Principal Component Analysis(PCA) [1], NMF [2], Local
Non-negative Matrix Factorization(LNMF) [3]) without using the information of how
the data are separated to different classes. Another class of criteria is the one that deals
directly with discrimination between classes (e.g.Linear Discriminant Analysis(LDA)
[4]).

A subspace method that aims at finding a face representation by using basis images
without using class information is NMF [2]. The NMF algorithm, like PCA, represents
a face as a linear combination of bases. The difference with PCA is that it does not allow
negative elements in both the basis vectors and the weights of the linear combination.



This constraint results to radically different bases than PCA. On one hand the bases of
PCA are eigenfaces, some of which resemble distorted versions of the entire face. On
the other hand the bases of NMF are localized features that correspond better to the
intuitive notions of face parts [2]. An extension of NMF thatgives even more localized
bases by imposing additional locality constraints is the so-called LNMF [3].

NMF variants for object recognition have been proposed in [5, 6]. Various distance
metrics suitable to NMF representation space have been proposed in [7]. Methods for
initializing the weights and the bases of the NMF decomposition have been proposed in
[8]. Theoretical aspects regarding why NMF gives a unique decomposition of an object
into its parts are provided in [9].

In the proposed technique we incorporate discriminant constraints inside the NMF
decomposition and that way a part based decomposition with enhanced discriminant
power is taken. The introduced method results to a class specific decomposition that is
unique for each facial (person) class. The intuitive motivation behind the class-specific
methods is to find for every face a unique decomposition into its own discriminant
parts. Class- specific discriminant transforms have been also used for discriminant di-
mensionality reduction in the feature vectors of the elastic grids and for discriminant
weighting of their nodes [10–13]. The introduced algorithmis applied to the frontal
face verification problem using the XM2VTS database.

2 Frontal Face Verification and Subspace Techniques

Let U be a facial image database. Each facial imagex ∈ U is supposed to belong to
one of theK facial (person) classes{U1,U2, . . . ,UK} with U =

⋃K
i=1 Ui. For a face

verification system that uses the databaseU , a genuine (or client) claim is performed
when a persont provides its facial imagex, claiming thatx ∈ Ur andt = r. When a
persont provides its facial imagex and claims thatx ∈ Ur, with t 6= r, an impostor
claim occurs. The scope of a face verification system is to handle properly these claims
by accepting the genuine claims and rejecting the impostor ones.

Let the facial image databaseU be comprised byL facial imagesxj ∈ ℜF
+, where

ℜ+ = [0,+∞) and let the cardinality of each facial classUr to beNr. A linear subspace
transformation of the originalF -dimensional space onto aM -dimensional subspace
(usuallyM ≪ F ) is a matrixW ∈ ℜM×F estimated using the databaseU . The new
feature vectoŕx ∈ ℜM is given by:

x́ = Wx. (1)

The rows of the matrixW contain the bases of the lower dimension feature space.
The bases matrixW could be the same for all facial classes of the database or could
be unique for each facial class. In case of class-specific image bases, for the reference
personr, the setIr = U − Ur, that corresponds to impostor images is used in order to
construct the two-class problem (genuine versus impostor class) [11].

After the projection given by (1), a distance metric is chosen in order to measure the
similarity of a test facial image to a certain class. This similarity measure can be theL1

norm, theL2 norm, the normalized correlation or the Mahalanobis distance. In case of
face verification, the algorithm should also learn a threshold on the similarity measure
in order to accept or reject a client/impostor claim.



3 The NMF algorithm

In order to apply NMF, the matrixX ∈ ℜF×L
+ = [xi,j ] should be constructed, where

xi,j is thei-th element of thej-th image. In other words thej-th column ofX is theuj

facial image. NMF aims to find two matricesZ ∈ ℜF×M
+ = [zi,k] andH ∈ ℜM×L

+ =
[hk,j ] such that,

X ≈ ZH. (2)

The facial imagexj after the NMF decomposition can be written asxj ≈ Zhj , where
hj is thej-th column ofH. Thus, the lines of the matrixZ can be considered as bases
images and thehj as the weight vector. Thehj vectors can also be considered as the
projected vectors of a lower dimensional feature space.

The NMF imposes non-negative constraints in both the elements ofzi,k and ofhk,j .
Thus, only non-subtractive combinations are allowed. Thisis believed to correspond
better to the intuitive notion of combining parts of face in order to create a whole one.

One of the algorithms initially proposed for finding the matricesZ andH used the
Kullback-Leibler divergence [14]:

DN (X||ZH) =
∑

i,j

(xi,j ln(
xi,j

∑

k zi,khk,j

) +
∑

k

zi,khk,j − xi,j) (3)

as the measure of the cost for factoringX into ZH [14]. The NMF factorization is the
outcome of the optimization:

min
Z,H

DN (X||ZH) subject to (4)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

By using an auxiliary function and the Expectation Maximization (EM) algorithm [14],
the following update rules forhk,j andzi,k guarantee a non increasing behavior of (3).
The update rule for thet-th iteration forhk,j is given by:

h
(t)
k,j = h

(t−1)
k,j

∑

i z
(t−1)
i,k

xi,j
∑

l
z
(t−1)

i,l
h
(t−1)

l,j

∑

i z
(t−1)
i,k

(5)

whereas, for thezi,k, the update rule is given by:

z
(t)
i,k = z

(t−1)
i,k

∑

j h
(t)
k,j

xi,j
∑

l
z
(t−1)

i,l
h
(t)

l,j

∑

j h
(t)
k,j

. (6)

Sincexj ≈ Zhj , a natural way to compute the projection ofxj to a lower dimen-
sional feature space using NMF isx́j = Z

†
xj . The pseudo-inverseZ† can be calculated

using singular value decomposition methods [15]. In any case, we can not use the coeffi-
cient matrixH computed directly from the update rules (which gives us its values in the
training phase), since we do not have any expression for calculating this representation
for the test images.



4 The LNMF algorithm

The idea of NMF decomposition was further extended to the LNMF [3] where ad-
ditional constraints concerning the spatial locality of the bases were employed in the
optimization problem defined in (4).

Let U = [ui,j ] = Z
T
Z, V = [vi,j ] = HH

T , both beingM × M , LNMF aims at
learning local features by imposing the following three additional locality constraints on
the NMF. The first constraint is to create bases that cannot befurther decomposed into
more components [3]. This is accomplished by making the bases as sparse as possible
by imposing

∑

i ui,i to be minimal [3].
Another constraint is to make the bases to be as orthogonal aspossible, so as to

minimize the redundancy between different bases. This can be imposed by requiring
∑

i6=j ui,j to be minimal. Another employed constraint, requires that
∑

i vi,i is maxi-
mized [3].

When the above constraints are incorporated in (3), a new costfunction is created
as:

DL(X||ZH) = DN (X||ZH) + α
∑

i,j

ui,j − β
∑

i

vi,i (7)

whereα, β > 0 are constants. A solution for the minimization of the cost given in (7)
subject to non-negative constraints, can be found in [3]. Inorder to ensure that the cost
function (7) is nonincreasing, the following update rules for zi,k andhk,j are employed:

h
(t)
k,j =

√

h
(t−1)
k,j

∑

i

z
(t−1)
i,k

xi,j
∑

l z
(t−1)
i,l h

(t−1)
l,j

(8)

ź
(t)
i,k = z

(t−1)
i,k

∑

j h
(t)
k,j

xi,j
∑

l
z
(t−1)

i,l
h
(t)

l,j

∑

j h
(t)
k,j

(9)

z
(t)
i,k =

ź
(t)
i,k

∑

l ź
(t)
l,k

. (10)

5 The CSDNMF algorithm

In this Section discriminant constraints are integrated inside the cost function (3). The
minimization procedure of the new cost function yields aClass-Specific Discriminant
Non-negative Matrix Factorization(CSDNMF) method. In order to formulate the CS-
DNMF decomposition, the facial image vectors of the genuineclaims to the reference
personr are in the firstNr = NG columns of the matrixX. Then, the columns from
Nr + 1 to L correspond to impostor claims. The total number of impostorclaims is
NI = L − Nr. The coefficient vectorhj of the imagexj that corresponds to theρ-th

image of the genuine class will be denoted asη
(G)
ρ . If the facial vectorxj is theρ-th im-

age of the impostor class then the corresponding coefficientvectorhj will be denoted

asη
(I)
ρ .



Let a distance metric (e.g. theL2 norm) be used in order to quantify the similarity
of a test facial image vectorxj to a given facial class. It sounds reasonable to require
that the feature vectors corresponding to the genuine class, should have great similarity
(small distance metric value), while the feature vectors ofthe impostor class should
have small similarity (large distance metric value).

In order to define the similarity of the projectionhj of the facial imagexj to a given
classr in the feature space of the coefficients, theL2 norm can be used as:

dr(hj) = ||hj − µ
(G)||2 (11)

whereµ
(G) is the mean vector of the vectorsη

(G)
ρ . In the reduced feature space of the

vectorshj we demand that the similarity measuresdr(η
(I)
ρ ) (impostor similarity mea-

sures) to be maximized while minimizing the similarity measuresdr(η
(G)
ρ ) (genuine

similarity measures). Then the optimization problem for the classr is the maximization
of:

1

NI

∑

xj∈Ir

dr(hj) =
1

NI

NI
∑

ρ=1

||η(I)
ρ − µ

(G)||2 = tr[Wr], (12)

whereWr = 1
NI

∑NI

ρ=1(η
(I)
ρ −µ

(G))(η
(I)
ρ −µ

(G))T . The second optimization problem
is the minimization of:

1

NG

∑

xj∈Ur

dr(hj) =
1

NG

NG
∑

ρ=1

||η(G)
ρ − µ

(G)||2 = tr[Br], (13)

whereBr = 1
NG

∑NG

ρ=1(η
(G)
ρ −µ

(G))(η
(G)
ρ −µ

(G))T . We impose these two additional
constraints in the cost function given in (4) as:

Dc(X||ZrHr) = DN (X||ZrHr) + ζtr[Br] − θtr[Wr] (14)

whereζ, θ > 0 are constants. The minimization of (14) gives a person specific decom-
position (different basesZr for each reference face classr).

In order to derive the coefficients of CSDNMF we have used an auxiliary function
similar to those used in the EM algorithm in [14]. LetG be an auxiliary function for
Y (F) if G(F,F(t−1)) ≥ Y (F) andG(F,F) = F. If G is an auxiliary function of
Y , thenY is nonincreasing under the updateF

t = arg minF G(F,F(t−1)). Let r be
the reference facial class, we can prove thatGc(H,H(t−1)) is an auxiliary function of
Yc(H) = Dc(X||ZrHr), whereGc(H,H(t−1)) is given by:

Gc(H,H(t−1)) =
∑

i

∑

j(xi,j lnxi,j − xi,j)+

+
∑

i

∑

j

∑

k

zi,kh
(t−1)

k,j
∑

l
zi,lh

(t−1)

l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)

k,j
∑

l
zi,lh

(t−1)

l,j

)+

+
∑

i

∑

j

∑

k zi,khk,j + ζtr[Br] − θtr[Wr].
(15)

It is straightforward to show thatGc(H,H) = Yc(H). In order to prove that
Gc(H,H(t−1)) ≥ Yc(H) since,ln(

∑

k zi,khk,j) is convex, the following inequality



holds:

− ln(
∑

k

zi,khk,j) ≤ −
∑

k

ak ln
zi,khk,j

ak

(16)

for all non-negativeak that satisfy
∑

k ak = 1. By lettingak =
zi,kh

(t−1)

k,j
∑

l
zi,lh

(t−1)

l,j

we obtain:

− ln(
∑

k

zi,khk,j) ≤
∑

k

zi,kh
(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

). (17)

From (17) it is straightforward to show thatGc(H,H(t−1)) ≥ Yc(H). Thus,
Gc(H,H(t−1)) is an auxiliary function ofYc(H).

In this decomposition we have two different update rules. One for the genuine class
and one for the impostor class. Forl = 1, . . . , NG (genuine class) the update rules for

the coefficientshk,l for the reference personr are given by letting∂Gc(H,H(t−1))
∂hk,l

= 0.
Then,

∂Gc(H,H(t−1))
∂hk,l

= −
∑

i xi,l

zi,kh
(t−1)

k,l
∑

n
zi,nh

(t−1)

n,l

1
hk,l

+
∑

i zi,k+

+2ζ(hk,l − µ
(G)
k ) 1

NG
− 2θ(µ

(G)
k − µ

(I)
k ) 1

NG
= 0.

(18)

The quadratic equation (18) is expanded as:

−
∑

i xi,l

zi,kh
(t−1)

k,l
∑

n
zi,nh

(t−1)

n,l

+ (1 − (2ζ + 2θ) 1
NG

( 1
NG

∑

λ,λ6=l hk,λ) + 2θ 1
NG

µ
(I)
k )hk,l+

+ 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)h2
k,l = 0.

(19)
By solving the quadratic equation (19) the update rules for thehk,l of the genuine class
are:

hk,l =

T +

√

T 2 + 4 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)h
(t−1)
k,l

∑

i z
(t−1)
i,k

xi,j
∑

n
z
(t−1)
i,n

h
(t−1)

n,l

2 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)
(20)

whereT is given by:

T = (2ζ + 2θ)
1

NG

(
1

NG

∑

λ,λ6=l

hk,λ) − 2θ
1

NG

µ
(I)
k − 1. (21)

The update rules for the coefficientshk,l for the impostor class of the reference

personr are given by letting∂Gc(H,H(t−1))
∂hk,l

= 0:

∂Gc(H,H(t−1))

∂hk,l

= −
∑

i

xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

1

hk,l

+
∑

i

zi,k−2
1

N I
θ(hk,l−µ

(G)
k ) = 0

(22)



wherej = NG + 1, . . . , L. By solving the quadratic equation (22) the update rules for
thehk,l are given by:

hk,l =

2θµ
(G)
k + NI +

√

(2θµ
(G)
k + NI)2 − 8NIθh

(t−1)
k,l

∑

i z
(t−1)
i,k

xi,j
∑

n
z
(t−1)
i,n

h
(t−1)

n,l

4θ
.

(23)
It can be easily proven that the update rules for the bases matrix Zr = [zi,k] for the

reference personr are given by:

z
(t)
i,k = z

(t−1)
i,k

∑

j h
(t)
k,j

xi,j
∑

l
z
(t−1)

i,l
h
(t)

l,j

∑

j h
(t)
k,j

(24)

and

z
(t)
i,k =

z
(t)
i,k

∑

l z
(t)
l,k

. (25)

When someone claims that a test imagex corresponds to a reference facial classr, then
x is projected using theZ†

r matrix asx́ = Z
†
rx.

6 Experimental Results

The experiments were conducted in the XM2VTS database usingthe protocol described
in [16]. The images were aligned semi-automatically according to the eyes position of
each facial image using the eye coordinates. The facial images were down-scaled to
64× 64 resolution. Histogram equalization was used for normalizing the facial images.
The XM2VTS database provides two experiment setups namely,Configuration I and
Configuration II [16]. Each Configuration is divided in threedifferent sets the training
set, the evaluation set and the test set. The training set is used to create client and
impostor models for each person. The evaluation set is used to learn the thresholds.

The training set of the Configuration I contains 200 persons with 3 images per
person. The evaluation set contains3 images per client for genuine claims and25
evaluation impostors with8 images per impostor. Thus, evaluation set gives a total
of 3 × 200 = 600 client claims and25 × 8 × 200 = 40.000 impostor claims. The
test set has2 images per client and70 impostors with8 images per impostor and gives
2 × 200 = 400 client claims and70 × 8 × 200 = 112.000 impostor claims. In the
training set the matrices of the basis images for NMF and LNMFdecompositions are
learned. These matrices are common for all persons. In case of CSNMF the training set
is used for calculating for each reference personr a different set of bases for feature
selection. For visual comparison a number of 25 images for the NMF, the LNMF and
the proposed CSDNMF (for the first person in the training set)are given in Figure 1.

The facial images have been projected using these bases intoa low dimensional
feature space and the normalized correlation was used in order to define the similarity
measure between two faces as:

D(xr,xt) =
x́

T
r x́t

||x́r|||x́t||
(26)



(a) (b) (c)

Fig. 1.A set of 25 bases images for (a) NMF, (b) LNMF and (c) CSDNMF.

wherexr andxt are the reference and the test facial image respectively, while x́r and
x́t are their projections to one of the subspace.

The similarity measures for each person, calculated in bothevaluation and training
set form the distance vectord(r). The elements of the vectord(r) are sorted in de-
scending order and are used for the person specific thresholds on the distance measure.
Let TQ(r) denote theQ-th order statistic of the vector of distances,d(r). The threshold
of the personr is chosen to be equal toTQ(r). Let x1

r, x
2
r andx

3
r be the 3 instances

of the personr in the training set. A claim of a person (with a facial imagext) to the
identity r is considered valid ifmaxj{D(xj

r,xt)} < TQ(r). Obviously when varying
Q, different pairs ofFalse Acceptance RateandFalse Rejection Ratecan be created and
that way aReceiver Operating Characteristic(ROC) curve is produced and theEqual
Error Rate(EER) can be measured [11, 16].

The performance of the NMF, LNMF and CSDNMF algorithms for various feature
dimensions in the test set of Configuration I is illustrated in Figure 2. The best EER
achieved for CSDNMF is3.4% when more than 110 dimensions are kept. The best
EER for NMF and LNMF is more than8%. That is, a decrease of more than4% in
terms of EER has been achieved.

7 Conclusions

We incorporated discriminant constraints in the cost of NMFdecomposition in order
to extract class-specific discriminant non-negative decomposition. We solved the new
optimization problem by developing update rules for both the weighting coefficients
and the bases. We applied the new decomposition to frontal face verification where
better performance than NMF and LNMF has been achieved.
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