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Abstract. In this paper, a supervised feature extraction method having both non-
negative bases and weights is proposed. The idea is to exteMNbthaegative
Matrix Factorization(NMF) algorithm in order to extract features that enforce not
only the spatial locality, but also the separability between classes in a disanimin
manner. The proposed method incorporates discriminant constragnde ithe
NMF decomposition in a class specific manner. Thus, a decompositiofaoéa

to its discriminant parts is obtained and new update rules for both the weights
and the basis images are derived. The introduced methods haveppied &0

the problem of frontal face verification using the well known XM2VTS tatse.

The proposed algorithm greatly enhance the performance of NMFdiotel face
verification.

1 Introduction

Face recognition/verification has attracted the atterdfoasearchers for more than two
decades and is among the most popular research areas inldhef ft@mputer vision
and pattern recognition. The most popular among the teaksigsed for frontal face
recognition/verification are the subspace methods. Thepade algorithms consider
the entire image as a feature vector and their aim is to fingggtions (bases) that opti-
mize some criterion defined over the feature vectors thaéspond to different classes.
Then the original high dimensional image space is projeicted low dimensional one.
The classification is usually performed according to a singfistance measure in the
final multidimensional space.

Various criteria have been employed in order to find the baéise low dimen-
sional spaces. Some of them have been defined in order to fijecpons that best
express the population (eBrincipal Component Analysi®CA) [1], NMF [2], Local
Non-negative Matrix FactorizatioLNMF) [3]) without using the information of how
the data are separated to different classes. Another diasi$asia is the one that deals
directly with discrimination between classes (d.tpear Discriminant Analysi$LDA)
[4]).

A subspace method that aims at finding a face representatiosibg basis images
without using class information is NMF [2]. The NMF algorith like PCA, represents
aface as a linear combination of bases. The difference With iB that it does not allow
negative elements in both the basis vectors and the weiglie dinear combination.



This constraint results to radically different bases th@#APOn one hand the bases of
PCA are eigenfaces, some of which resemble distorted versibthe entire face. On

the other hand the bases of NMF are localized features thegspond better to the

intuitive notions of face parts [2]. An extension of NMF tlgwes even more localized

bases by imposing additional locality constraints is theaited LNMF [3].

NMF variants for object recognition have been proposed jB][5various distance
metrics suitable to NMF representation space have beerogedpn [7]. Methods for
initializing the weights and the bases of the NMF decomjmsiave been proposed in
[8]. Theoretical aspects regarding why NMF gives a unigumdegosition of an object
into its parts are provided in [9].

In the proposed technique we incorporate discriminanttcaimsés inside the NMF
decomposition and that way a part based decomposition witlareced discriminant
power is taken. The introduced method results to a classfepgecomposition that is
unique for each facial (person) class. The intuitive maidrabehind the class-specific
methods is to find for every face a uniqgue decomposition it¢mwn discriminant
parts. Class- specific discriminant transforms have besmuaded for discriminant di-
mensionality reduction in the feature vectors of the etagtids and for discriminant
weighting of their nodes [10-13]. The introduced algoritlsrapplied to the frontal
face verification problem using the XM2VTS database.

2 Frontal Face Verification and Subspace Techniques

Let U/ be a facial image database. Each facial image U/ is supposed to belong to
one of theK facial (person) classe@fy,Us, ..., Uk} with U = Ufilui. For a face
verification system that uses the databése genuine (or client) claim is performed
when a person provides its facial image, claiming thatx € U, andt = r. When a
persont provides its facial image and claims thak € U,., with ¢ # r, an impostor
claim occurs. The scope of a face verification system is tallegoroperly these claims
by accepting the genuine claims and rejecting the impostes.o

Let the facial image databasebe comprised by, facial imagesx; € R, where
R, = [0, +00) and let the cardinality of each facial cldgsto beN,.. A linear subspace
transformation of the original’-dimensional space onto & -dimensional subspace
(usually M < F)is a matrixW € RM*F estimated using the databdgeThe new
feature vectok € RM is given by:

%X = Wx. 1)

The rows of the matriX3 contain the bases of the lower dimension feature space.
The bases matri¥ could be the same for all facial classes of the database dd cou
be unique for each facial class. In case of class-specifigénbases, for the reference
personr, the setZ,, = U/ — U, that corresponds to impostor images is used in order to
construct the two-class problem (genuine versus imposssy[11].

After the projection given by (1), a distance metric is choseorder to measure the
similarity of a test facial image to a certain class. Thisikinty measure can be thie,
norm, theL, norm, the normalized correlation or the Mahalanobis distain case of
face verification, the algorithm should also learn a thr&sba the similarity measure
in order to accept or reject a client/impostor claim.



3 The NMF algorithm

In order to apply NMF, the matriX < %EXL = [z; ;] should be constructed, where
x; ; is thei-th element of thg-th image. In other words thgth column ofX is theu;
facial image. NMF aims to find two matric& € R} = [z; ;] andH € R}*L =
[hx,;] such that,

X ~ZH. (2)

The facial imagex; after the NMF decomposition can be writtenxas~ Zh;, where

h; is the j-th column ofH. Thus, the lines of the matriZ can be considered as bases
images and thé; as the weight vector. The; vectors can also be considered as the
projected vectors of a lower dimensional feature space.

The NMF imposes non-negative constraints in both the elésvn; ;, and ofh,, ;.
Thus, only non-subtractive combinations are allowed. Thiselieved to correspond
better to the intuitive notion of combining parts of face nder to create a whole one.

One of the algorithms initially proposed for finding the nieésZ andH used the
Kullback-Leibler divergence [14]:

Z;
X||ZH) = i, b i kN i 3
N(XIZH) =3 (o (s Z5p 04 D sy —aip) @)

as the measure of the cost for factorikgnto ZH [14]. The NMF factorization is the
outcome of the optimization:

Iznlgll Dy (X||ZH) subject to 4)

Zig =0, hy >0,z =1, Vj.
i

By using an auxiliary function and the Expectation Maxintiaa (EM) algorithm [14],
the following update rules fok, ; andz; , guarantee a non increasing behavior of (3).
The update rule for theth iteration forhy, ; is given by:

Z(til)‘l”i
i ik (t—1) (f 1)
@) _ 5 (=1) B sk
hk,j - hk,j Sz (lt ) ©)
i zk
whereas, for the; ;, the update rule is given by:
N
o) = 1)23 ’JZ AR ©)
z k .
Zj hk,y

Sincex; ~ Zh;, a natural way to compute the projectionxofto a lower dimen-
sional feature space using NMF#s = Z'x;. The pseudo-inversg' can be calculated
using singular value decomposition methods [15]. In ang cags can not use the coeffi-
cient matrixH computed directly from the update rules (which gives usataes in the
training phase), since we do not have any expression foulegileg this representation
for the test images.



4 The LNMF algorithm

The idea of NMF decomposition was further extended to the IENJg] where ad-
ditional constraints concerning the spatial locality of thases were employed in the
optimization problem defined in (4).

LetU = [u; ;] = ZTZ, V = [v; ;] = HHT, both beingM/ x M, LNMF aims at
learning local features by imposing the following threeitiddal locality constraints on
the NMF. The first constraint is to create bases that cannfirbeer decomposed into
more components [3]. This is accomplished by making thedasesparse as possible
by imposing}_, u; ; to be minimal [3].

Another constraint is to make the bases to be as orthogornabsssble, so as to
minimize the redundancy between different bases. This eaimposed by requiring
Z#j u;,; to be minimal. Another employed constraint, requires thatv; ; is maxi-
mized [3].

When the above constraints are incorporated in (3), a newfgostion is created
as:

Dy (X||ZH) = Dy(X||ZH) + a > ui; =8> v @)
1,7 )

wherea, 8 > 0 are constants. A solution for the minimization of the cosegiin (7)
subject to non-negative constraints, can be found in [3prtfer to ensure that the cost
function (7) is nonincreasing, the following update rulesd; ., andh,, ; are employed:

() _ (t=1) (t—1) Lij
hy; = \/hk,j Zzi,k —1) (8)
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5 The CSDNMF algorithm

In this Section discriminant constraints are integrateitie the cost function (3). The
minimization procedure of the new cost function yield€lass-Specific Discriminant
Non-negative Matrix FactorizatioCSDNMF) method. In order to formulate the CS-
DNMF decomposition, the facial image vectors of the genwgiaéns to the reference
personr are in the firstV,, = Ng columns of the matrixX. Then, the columns from
N, + 1 to L correspond to impostor claims. The total number of impostaims is
N; = L — N,. The coefficient vectoh; of the imagex; that corresponds to theth

image of the genuine class will be denoted;é@. If the facial vector; is thep-th im-
age of the impostor class then the corresponding coeffigisetorh; will be denoted

asn.



Let a distance metric (e.g. tHe, norm) be used in order to quantify the similarity
of a test facial image vectot; to a given facial class. It sounds reasonable to require
that the feature vectors corresponding to the genuine,dhesild have great similarity
(small distance metric value), while the feature vectorshefimpostor class should
have small similarity (large distance metric value).

In order to define the similarity of the projectidy) of the facial imagex; to a given
classr in the feature space of the coefficients, fiienorm can be used as:

dy(hy) = ||y — p|P? (11)

whereu (%) is the mean vector of the vectcm;éc). In the reduced feature space of the
vectorsh; we demand that the similarity measumn(l)) (impostor similarity mea-
sures) to be maximized while minimizing the similarity me@esd, (1, @ ) (genuine

similarity measures). Then the optimization problem far thass: is the maximization
of:

Z d.( len“) p D2 = tr[W,], (12)

xEI

whereW, = - Y70 (08 = @) (n{) —u©)T The second optimization problem
is the minimization of:

Ng
1 1
— ¥ )= I — @) =
NG dr(hﬁ) NG p an 1 || tr[BTL (13)

X €U

whereB, Z_N%;Z NG (il — w(@)(nlS — w(@)T We impose these two additional
constraints in the cost function given in (4) as:

DF(XHZTHT) = DN(XHZT‘HT) + Ctr[Br] - atr[wr] (14)

where(, § > 0 are constants. The minimization of (14) gives a person §pe&lgcom-
position (different baseg,. for each reference face clags

In order to derive the coefficients of CSDNMF we have used adiliaty function
similar to those used in the EM algorithm in [14]. L&tbe an auxiliary function for
Y (F) if G(F,F~V) > Y(F) andG(F,F) = F. If G is an auxiliary function of
Y, thenY is nonincreasing under the upddé = arg ming G(F,F*~1). Letr be
the reference facial class, we can prove @atH, H(!~1)) is an auxiliary function of
Y.(H) = D.(X||Z,H,.), whereG.(H, H!~1) is given by:

G.(H,H-D) =% (@i e j — xw)+
Zi, kh ,1) zlkhf b

+Z Z Zk Z h(t D (In(zi khr ;) — hlﬁkh](tl))'i'
+320; Zkzzkhkg+4tf[ r] — OU[W.]. “
(15)

It is straightforward to show tha6G.(H,H) = Y.(H). In order to prove that
G.(H,H*Y) > Y.(H) since,In(}", 2 1hx ;) is convex, the following inequality



holds: N
Zi, kK, 5
-1 ikhe ) < — ln === 16
H(Ek Zighi,j) < % axIn = (16)

(t—1)

for all non-negativey;, that satisfy) °, a;, = 1. By lettinga;, = # we obtain:
[ %)
(t—1) (t—1)

zi,kh zi,kh
—n() " zikhiy) < %(ln(zi,khw) —~ ln%) (17)
k k lezl 1,5 lzllhlj

From (17) it is straightforward to show th@t.(H, H(*~1)) > Y,(H). Thus,
G.(H,HY) is an auxiliary function o, (H).

In this decomposition we have two different update rulese €@m the genuine class
and one for the impostor class. ot 1, ..., N (genuine class) the update rules for
the coefficientsy, ; for the reference persanare given by Iettinq% =0
Then, ’

aG (HHD zihi
(Ohk,l )= _Z xllz Zi,kil(t D hk, + Z Zik T (18)
G G I
2001~ WD) — 200D — D)2 =0,

The quadratic equation (18) is expanded as:

Zi, b
-2 xi,l% + (1= (20 +20) g=(§5 Xaa ) + 291\%#;&1))%#
x5 (2¢ = (2 +20) §g-)hi, = 0.
(19)
By solving the quadratic equation (19) the update rulestfer, ; of the genuine class
are:

T+¢T2+4 (26 = (26 + 2003 2 e

th _ n “in n,l
255 (2¢ = (2¢ +20) )

(20)

whereT' is given by:
= (2 +20) Z hiex) — 29— ph —1. (21)
G ANA

The update rules for the coefficients ; for the impostor class of the reference

. . (t—1)
person- are given by Iettlngwc(gl,;iivl) =0

oG (H,H(¢-D szh(f Y
BT E D=

; 2—0}1 —uy =0
ahkl h(t 1)hkl+22:2k k,l )

(22)

7L 1n



wherej = Ng + 1,..., L. By solving the quadratic equation (22) the update rules for
thehy,; are given by:

QGM(G)+N[+\/(20ﬂk + Nj)2 —8N;0 h(t 1)21 ftk 2 W

ot = 46
(23)

It can be easily proven that the update rules for the basa®ai#at = [z; ;] for the
reference personare given by:

Ilj

L) v
i,k Zjhkd

(24)

and

O 25

Nl X (25)
2 2Lk

When someone claims that a test imageorresponds to a reference facial clasthen

x is projected using th&! matrix asx = Z!x.

6 Experimental Results

The experiments were conducted in the XM2VTS database tisingrotocol described
in [16]. The images were aligned semi-automatically acicgydo the eyes position of
each facial image using the eye coordinates. The facial @nagere down-scaled to
64 x 64 resolution. Histogram equalization was used for norm@djzhe facial images.
The XM2VTS database provides two experiment setups nar@elyfiguration | and
Configuration 1l [16]. Each Configuration is divided in threiferent sets the training
set, the evaluation set and the test set. The training seted to create client and
impostor models for each person. The evaluation set is usiedtn the thresholds.
The training set of the Configuration | contains 200 persoith & images per
person. The evaluation set contaihismages per client for genuine claims agd
evaluation impostors witl® images per impostor. Thus, evaluation set gives a total
of 3 x 200 = 600 client claims and25 x 8 x 200 = 40.000 impostor claims. The
test set hag images per client and) impostors with8 images per impostor and gives
2 x 200 = 400 client claims andr0 x 8 x 200 = 112.000 impostor claims. In the
training set the matrices of the basis images for NMF and LNMEompositions are
learned. These matrices are common for all persons. In ¢&38MMF the training set
is used for calculating for each reference persandifferent set of bases for feature
selection. For visual comparison a number of 25 images NNF, the LNMF and

the proposed CSDNMF (for the first person in the training aeg)given in Figure 1.
The facial images have been projected using these basea Iote dimensional

feature space and the normalized correlation was used ér twalefine the similarity
measure between two faces as:

T
X, Xt

D = XXt
(e %) = T Tl

(26)



(b)
Fig. 1. A set of 25 bases images for (a) NMF, (b) LNMF and (c) CSDNMF.

wherex,. andx; are the reference and the test facial image respectivelle wh and
%; are their projections to one of the subspace.

The similarity measures for each person, calculated in bagtuation and training
set form the distance vectal(r). The elements of the vectal(r) are sorted in de-
scending order and are used for the person specific thresbolthe distance measure.
Let T (r) denote the&)-th order statistic of the vector of distancdsy). The threshold
of the personr is chosen to be equal i, (r). Let x!, x2 andx? be the 3 instances
of the person- in the training set. A claim of a person (with a facial imag$ to the
identity r is considered valid ifnax;{D(xZ,x:)} < Tg(r). Obviously when varying
Q, different pairs ofralse Acceptance RatandFalse Rejection Ratean be created and
that way aReceiver Operating Characterist{ROC) curve is produced and tigual
Error Rate(EER) can be measured [11, 16].

The performance of the NMF, LNMF and CSDNMF algorithms forioas feature
dimensions in the test set of Configuration | is illustrated-igure 2. The best EER
achieved for CSDNMF i88.4% when more than 110 dimensions are kept. The best
EER for NMF and LNMF is more thag%. That is, a decrease of more th&¥ in
terms of EER has been achieved.

7 Conclusions

We incorporated discriminant constraints in the cost of Ndf€omposition in order
to extract class-specific discriminant non-negative demsition. We solved the new
optimization problem by developing update rules for both weighting coefficients
and the bases. We applied the new decomposition to frontal farification where
better performance than NMF and LNMF has been achieved.
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