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Abstract— In this paper, a comparative study between standard
linear subspace techniques such as eigenfaces and fisherfaces
and a novel morphological elastic graph matching for frontal
face verification is presented. A set of experiments has been
conducted in the M2VTS database in order to investigate the
performance of each algorithm in different image alignment
conditions. The experimental results indicate the superiority of
the novel morphological elastic graph matching against all the
other presented techniques.

I. I NTRODUCTION

Biometrics refer to the automatic identification of a person
based on his/her physiological or behavioral characteristics.
Research on biometrics has shown significant increase over
the past few years due to the increasing demands on security
applications. Biometrics can be used either for person recogni-
tion or person verification. The two problems are conceptually
different. On the one hand, a person recognition system assists
a human expert in determining the identity of a test face.
On the other hand, person verification systems should decide
whether an identity claim is valid or invalid. One of the most
popular biometric modalities used by the scientific community
is face verification. Face recognition/verification has attracted
the attention of researchers for more than two decades and is
among the most popular research areas in the field of computer
vision and pattern recognition.

The most popular among the techniques used for frontal face
recognition/verification are the subspace methods. Subspace
methods project the original high dimensional image space
into a low dimensional one. The classification is usually
performed according to a simple distance measure in the
final multidimensional space. Two of the most well studied
subspace methods for face recognition are the eigenfaces
[1] and the fisherfaces [2]. The main limitation of subspace
methods is that they require perfect alignment of the face
images in order to be functional.

Another popular class of techniques used for frontal face
recognition/verification is elastic graph matching. Elastic
graph matching is a simplified implementation of the Dy-
namic Link Architecture (DLA) [3]. DLA is a general object
recognition technique that represents an object by projecting
its image onto a rectangular elastic grid where a Gabor wavelet
bank response is measured at each node [4]. A variant of
elastic graph matching based on multiscale dilation-erosion,

the so-called morphological elastic graph matching (MEGM)
was proposed and tested for frontal face verification [5].

In this paper a comparative study is done between some
standard linear subspace methods, like eigenfaces and fisher-
faces, and morphological elastic graph matching using a novel
multiscale analysis that is robust against illumination changes.
This study was performed in order to investigate the sensi-
tivity of these face verification systems under different image
alignment conditions. All the experiments were conducted in
the M2VTS database.

II. SUBSPACEMETHODS

Let M be the number of samples in the image database
U = {u1,u2, ..,uM} whereui ∈ ℜn is a database’s image.
A linear transformation of the originaln-dimensional space
onto a subspace withm-dimensions (m << n) is a matrix
WT ∈ ℜm×n. The new feature vectorsyk ∈ ℜm are given
by:

yk = WT (uk − ū), k ∈ {1, 2, . . . ,M} (1)

whereū ∈ ℜn is the mean image of all samples.
One of the oldest and well studied methods for low di-

mension representation of faces is the eigenface approach [6].
This representation was used in [1] for face recognition. The
idea behind the eigenface representation is to choose a dimen-
sionality reduction linear transformation that maximizesthe
scatter of all projected samples. The matrix that is connected to
the scatter of multidimensional data is the total scatter matrix
ST ∈ ℜn×n defined as:

ST =

M
∑

k=1

(uk − ū)(uk − ū)T (2)

The transformation matrix,WT
e , is chosen to be the one

that maximizes the determinant of the total scatter matrixST

of the projected samples, i.e.,

We = arg max
W

|WT ST W| = [w1 w2 . . . wm] (3)

wherewi ∈ ℜn is the eigenvector that corresponds to theith
largest eigenvalue ofST . The matrixST is obvious a very
high dimensional matrix. Thus, straightforward calculation of
eigenvectors ofST is not feasible. Fortunately, due to the



fact that its rank is less or equal toM − 1 there are some
computational inexpensive ways to compute it [1].

The transformed feature vectorsyk, produced by this di-
mensionality reduction method, are called most expressive
features because they best express the population [6], [7].
The main drawback of the eigenfaces approach, as a subspace
method, is that it does not deal directly with discrimination be-
tween classes. In order to use the information of how the data
are separated to different classes, Fisher’s Linear Discriminant
(FLD) is used to produce the linear transformation. Let that
each imageui, in the image databaseU, belongs to one of
theC person classes{U1, U2, . . . , UC}. Let the between-class
scatter matrix be defined as:

SB =

C
∑

i=1

Ni(ūi − ū)(ūi − ū)T (4)

and the within-class scatter matrix be defined as:

SW =

C
∑

i=1

∑

uk∈Ui

(uk − ūi)(uk − ūi)
T , (5)

where ūi is the mean of classUi, and Ni is the cardinality
of class Ui. The goal of the linear transformationWT

f is
to maximize the between class scatter while minimizing the
within class scatter, i.e.,

Wf = arg max
W

|WT SBW|

|WT SW W|
= [w1 w2 . . . wm]. (6)

The advantage of using ratio (6) is that ifSW is not
singular then (6) is maximized when the column vectors of
the projection matrix,Wf , are the eigenvectors ofS−1

W SB .
For a face database withC classes andM total images, the
rank of SW is at mostM − C and the rank ofSB is at
mostC − 1. Thus, there are at mostC − 1 eigenvectors that
correspond to non zero eigenvalues ofS−1

W SB . To cope with
the fact thatSW has rank(M − C) << n, fisherfaces where
proposed in [2]. Fisherfaces, is a two step dimensionality
reduction method. First the feature dimensionality is reduced
to M −C dimensions using the eigenfaces approach in order
for SW to become non-singular. After that, the dimension of
the new features is reduced further using the criterion (6).The
total dimensionality reduction transformation tol ≤ C − 1
dimensions is:

WT
t = WT

f WT
e ∈ ℜl×n (7)

where WT
e and WT

f are the first and the second dimen-
sionality reduction transformations respectively. In [8]was
shown that fisherfaces outperform eigenfaces only when large
and representative training data sets are available. The main
problem of subspace methods is that they require the facial
images to be perfectly aligned [8]. That is, all the facial
images should be aligned in order to have all the fiducial
points (e.g. eyes, nose, mouth, e.t.c.) represented at the same
position inside the feature vector. For this purpose the facial
images are very often aligned manually and moreover they
are anisotropically scaled. Perfect automatic alignment is in
general a difficult task to be assessed.

III. M ORPHOLOGICALELASTIC GRAPH MATCHING

A technique for face verification/recognition that does not
require perfect alignment in order to perform well is the elastic
graph matching [4], [5], [9] algorithm. In all cases [4], [5], [9]
no alignment preprocessing step was used. Recently it was
shown that morphological elastic graph matching combined
with support vector machines had very good performance for
frontal face authentication [10]. A more detailed description
of elastic graph matching follows.

The facial image region is analyzed and a set of local
descriptors extracted at the node of a sparse grid, is created.
There are various types of grids proposed in the literature
[4], [5], [9]. The simplest is an evenly distributed grid over
a rectangular image region. This type of grid was used in
the experiments presented in this paper. In all cases, the first
step of the elastic graph matching algorithm is to build an
information pyramid in the reference face image. In the mor-
phological elastic graph matching this information pyramid is
build using multiscale morphological dilation-erosions [11].
Given an imagef(x) : D ⊆ Z2 → ℜ and a structuring
function g(x) : G ⊆ Z2 → ℜ, the dilation of the image
f(x) by g(x) is denoted by(f ⊕ g)(x). Its complementary
operation, the erosion, is denoted by(f ⊖ g)(x) [12]. The
multiscale dilation-erosion pyramid of the imagef(x) by
gσ(x) is defined by [11]:

(f ∗ gσ)(x) =







(f ⊕ gσ)(x) if σ > 0
f(x) if σ = 0

(f ⊖ g|σ|)(x) if σ < 0
(8)

whereσ denotes the scale parameter of the structuring func-
tion.

Such morphological operation can highlight and capture
important information for key facial features such as eyebrows,
eyes, nose tip, nostrils, lips, face contour, etc. but can be
affected by different illumination conditions and noise [5]. To
compensate for these conditions, the normalized multiscale
dilation-erosion is proposed for facial image analysis. Itis
well known that the different illumination conditions affect
the facial region in a non uniform manner. However, it can
safely be assumed that the illumination changes are locally
uniform inside the area of the structuring element used for
multiscale analysis. The proposed analysis is:

(f∗gσ)n(x) =

{

(f ⊕ gσ)(x) − µz∈Gσ
(f(x − z)) if σ > 0

f(x) if σ = 0
(f ⊖ g|σ|)(x) − µz∈G|σ|

(f(x + z)) if σ < 0
(9)

whereµz∈Gσ
(f(x − z)) and µz∈Gσ

(f(x + z)) are the mean
values of the imagef(x − z), x − z ∈ D and f(x + z),
x + z ∈ D inside the support area of the structuring element
Gσ = {z ∈ G : ||z|| < σ}, respectively. The structuring
element used in all experiments was cylindrical for compu-
tational complexity reasons [5], [12]. The output of these
morphological operations form the feature vectorj(x) at the
grid node located at image coordinatesx. Figure 1 depicts the
output of the normalized dilation erosion for various scales.
The first nine pictures starting from the upper left corner are



eroded images and the remaining nine are dilated images. The
new dynamic link architecture will be denoted as normalized
morphological elastic graph matching (NMEGM) in the rest
of the paper.

Fig. 1. Output of normalized multi-scale dilation-erosion for nine scales.

The next step of the elastic graph matching is to translate
and deform the reference graph on the test image so that a cost
function is minimized. Let the superscriptst andr denote a test
and a reference person (or grid), respectively. TheL2 norm,
is used as a similarity measure, between the feature vectors
at the lth grid node of the reference and the test graph, i.e.
Cu(j(xt

l), j(x
r
l )) = ||j(xt

l) − j(xr
l )||. The objective is to find

a set of vertices{xt
l , l ∈ V } that minimize the cost function:

D(t, r) =
∑

l∈V {Cu(j(xt
l), j(x

r
l ))} subject to

xt
l = xr

l + s + ql, ||ql|| ≤ qmax,
(10)

where s is a global translation of the graph andql denotes
a local perturbation of the grid nodes. The choice ofqmax
controls the rigidity/plasticity of the graph. The cost function
given by (10) defines the similarity measure between two
persons, in the morphological elastic graph matching.

IV. EXPERIMENTAL RESULTS

The linear subspace techniques and the morphological
elastic graph matching presented in the previous sections
have been tested on the M2VTS database [13]. The database
contains 37 persons’ video data. Four recordings (i.e., shots)
of the 37 persons have been collected. Only the luminance
information has been considered in all verification techniques.
The experimental protocol is depicted in Figure 2 and is an
implementation of the ”leave one out” principal. When this
protocol is applied to the M2VTS database, it gives a total of
5328 impostor and 5328 client claims. The objective in the
training procedure is to determine a threshold per person on
the distance measure. The linear transformations should also
be learned in case of subspace methods. The strategy used
for choosing the thresholds is the one described in [5]. An
identity claim of a test person is considered as valid if the
resulting similarity distance between the test and a reference

graph is less than or equal to the predefined threshold. In
case of subspace methods the claim is considered valid if
the euclidian distance between the test feature vector and
one of the reference feature vectors is less than or equal
to the predefined threshold. For a given set of thresholds,
the performance of the verification system can be expressed
using the false acceptance rate (FAR) and the false rejection
rate (FRR). Accordingly, the plot of FRR versus FAR can be
created using as implicit parameter, the set of thresholds.This
plot forms the Receiver Operating Characteristic (ROC) curve
of the verification technique. The operating point used more
frequently for performance evaluation is the one having FAR
equal to FRR and is called Equal Error Rate (EER).

Fig. 2. The M2VTS protocol.

The experiments were conducted in order to illustrate how
the performance of each verification system varies when a
perfect image alignment system is not available. In the firstset
of experiments all images were aligned manually according to
the eyes position of each facial image. For subspace techniques
the background was eliminated in order to diminish its impact
in the verification procedure. This step is crucial for subspace
techniques since the remaining background around the facial
region reduces the verification performance. The achieved
EERs for the different verification methods described in this
paper are summarized in Table I. The best EER,6.05%, is
achieved using the novel multiscale morphological analysis,
presented in Section III.

TABLE I
COMPARISON OF EQUAL ERROR RATES FOR SUBSPACE AND ELASTIC

GRAPH MATCHING VERIFICATION TECHNIQUES IN THE ALIGNED(A) AND

ATTACKED (BY SCALE (S) AND ROTATION (R)) M2VTS DATABASE.

Verification Technique EER(A) (%) EER(R) (%) EER(S) (%)
NMEGM 6.05 6.65 7.4
MEGM 9.4 10.2 11.1

Eigenfaces 10-40 13.1-38 13-39
Fisherfaces 8.3-26 9.5-26 11-31

Assuming that a perfect alignment method is not available,
every image of the aligned M2VTS database is attacked with a



random rotation, uniformly distributed in(−3, 3) degrees. The
minimum EER, for the subspace methods, is increased about
1.2−3.1%. Another attack considered, is scaling. Every image
of the aligned M2VTS database is attacked with a random
scaling, uniformly distributed in(−5, 5) pixels. That is, the
aligned face images are randomly scaled in such a way that the
distance between the eyes to be increased or decreased bya ∈
(−5, 5) pixels. The minimum EER, for the linear subspace,
methods is increased about2.7 − 3.0%.

In Figure 2 it is shown that the training set, at each circle
of the ”leave-one-out” protocol, is comprised of 36 different
client classes and36 × 3 = 108 images. Thus, 107 is the
maximum number of eigenfaces and 35 is the maximum
number for fisherfaces that can be produced in the training
phase. Figure 3 shows the performance of the eigenfaces for
various feature dimensions, in the aligned and in the attacked
M2VTS database. Figure 4 describes the performance of fish-
erfaces verification system for various feature dimensions. It is
obvious that the performance of the subspace methods greatly
depends on the alignment method used by the verification
system. Another interesting observation is that in the attacked
M2VTS database, the fisherfaces subspace method has very
unstable behavior and the performance deteriorates as more
discriminant dimensions are kept. On the contrary, elastic
graph matching is not so sensitive to geometric distortions.
Thus, elastic graph matching is more reliable for real face
verification systems where perfect alignment is not available.
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Fig. 3. EER for various number of kept eigenfaces.

V. CONCLUSIONS

In this paper a comparison between linear subspace methods
and elastic graph matching that use a novel morphological
multiscale analysis for frontal face verification was given. Dif-
ferent alignment conditions were considered. The experimental
results confirmed the fact that the performance of subspace
methods greatly depends on the alignment system used. On
the contrary, morphological elastic graph matching is not so
sensitive to geometric distortions.
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Fig. 4. EER for various number of kept fisherfaces.
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