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Abstract— In this paper, a comparative study between standard the so-called morphological elastic graph matching (MEGM)
linear subspace techniques such as eigenfaces and fisherfacefas proposed and tested for frontal face verification [5].
and a novel morphological elastic graph matching for frontal In this paper a comparative study is done between some

face verification is presented. A set of experiments has been . . . .
conducted in the M2VTS database in order to investigate the standard linear subspace methods, like eigenfaces and-fishe

performance of each algorithm in different image alignment faces, and morphological elastic graph matching using &nov
conditions. The experimental results indicate the superiority of multiscale analysis that is robust against illuminatioarajes.

the novel morphological elastic graph matching against all the Thijs study was performed in order to investigate the sensi-
other presented techniques. tivity of these face verification systems under differenaga
alignment conditions. All the experiments were conducted i
the M2VTS database.

Biometrics refer to the automatic identification of a person
based on his/her physiological or behavioral charactesist Il. SUBSPACEMETHODS

Research on biometrics has shown significant increase ove[ ot As be the number of samples in the image database

the past_ few years dge to the increasipg demands on s:ecuﬂty: {uy,uz, .., up;} Whereu; € R" is a database’s image.

applications. Biometrics can be used either for persongii€o A jinear transformation of the originat-dimensional space

tion or person verification. The two problems are conceptualynig a subspace witm-dimensions . << n) is a matrix

different. On the one hand, a person recognition systemstassiy 7 < pmxn. The new feature vectorg, € R™ are given

a human expert in determining the identity of a test facg,,.

On the other hand, person verification systems should deci(}/e

whether an identity claim is valid or invalid. One of the most yvi =Wl (u, —1u), ke{l,2,...,M} 1)

popular biometric modalities used by the scientific comnyuni B . .

is face verification. Face recognition/verification hasaated Whereu € 3" is the mean image of all samples. .

the attention of researchers for more than two decades and i{©N€ Of the oldest and well studied methods for low di-

among the most popular research areas in the field of comp R§"SION representation of faces is the eigenface apprégch [

vision and pattern recognition. Thls rep(esentathn was used in [1] fqr che recognitiore Th
The most popular among the techniques used for frontal fA@€2 Pehind the eigenface representation is to choose adime

recognition/verification are the subspace methods. Seespa©onality reduction linear transformation that maximizée

methods project the original high dimensional image spag&atter of all projected samples. The matrix that is coretetd

into a low dimensional one. The classification is usuallg'e scatter of multidimensional data is the total scattetrima

performed according to a simple distance measure in tha € " defined as:

I. INTRODUCTION

final multidimensional space. Two of the most well studied M
subspace methods for face recognition are the eigenfaces Sr = Z(uk —a)(up —a)” (2
[1] and the fisherfaces [2]. The main limitation of subspace k=1

methods is that they require perfect alignment of the face
images in order to be functional.

Another popular class of techniques used for frontal fa
recognition/verification is elastic graph matching. Blast
graph matching is a simplified implementation of the Dy- w, = argmax|WTSTW\ =[wi Wy ... Wy (3)
namic Link Architecture (DLA) [3]. DLA is a general object w
recognition technique that represents an object by priagectwherew; € R™ is the eigenvector that corresponds to itle
its image onto a rectangular elastic grid where a Gabor wavelrgest eigenvalue 08,. The matrix S is obvious a very
bank response is measured at each node [4]. A varianthijh dimensional matrix. Thus, straightforward calcudatiof
elastic graph matching based on multiscale dilation-ergsi eigenvectors ofSt is not feasible. Fortunately, due to the

The transformation matrixW?, is chosen to be the one
that maximizes the determinant of the total scatter maix
& the projected samples, i.e.,



fact that its rank is less or equal t/ — 1 there are some 1. M ORPHOLOGICALELASTIC GRAPH MATCHING

computational inexpensive ways to compute it [1l. A technique for face verification/recognition that does not
The transformed feature vectogg,, produced by this di- require perfect alignment in order to perform well is theséita
mensionality reduction method, are called most 'EXPressieaph matching [4], [5], [9] algorithm. In all cases [4], [39]
features because they best express the population [6], [{d alignment preprocessing step was used. Recently it was
The main drawback of the eigenfaces approach, as a Subspgf§yn that morphological elastic graph matching combined
method, is that it does not deal directly with discriminatlwe- ith support vector machines had very good performance for

tween classes. In order to use the information of how the datgntal face authentication [10]. A more detailed desdvipt
are separated to different classes, Fisher’s Linear Disgant ¢ o|astic graph matching follows.

(FLD) is used to produce the linear transformation. Let that The facial image region is analyzed and a set of local
each imageu;, in the image databas®, belongs to one of gegcriptors extracted at the node of a sparse grid, is create

the C person classefl/, Uy, ..., Uc}. Let the between-class There are various types of grids proposed in the literature
scatter matrix be defined as: [4], [5], [9]. The simplest is an evenly distributed grid ove
¢ a rectangular image region. This type of grid was used in
Sp =) Ni(a—a)(—a)" (4)  the experiments presented in this paper. In all cases, tte fir
i=1 step of the elastic graph matching algorithm is to build an
and the within-class scatter matrix be defined as: information pyramid in the reference face image. In the mor-
c phological elastic graph matching this information pyrdns
Sw=>_ Y (w—u)(u—u)", (5) build using multiscale morphological dilation-erosiorfsl].
i=1 ugel; Given an imagef(x) : D C Z? — R and a structuring

where; is the mean of clas#/;, and N; is the cardinality function g(x) : G C Z? — R, the dilation of the image
of classU;. The goal of the linear transformatioW} is f(x) by g(x) is denoted by(f @ g)(x). Its complementary
to maximize the between class scatter while minimizing theperation, the erosion, is denoted by & g)(x) [12]. The

within class scatter, i.e., multiscale dilation-erosion pyramid of the imag&x) by
T g-(x) is defined by [11]:
Wf:argmaxwz[wl Wa ... Wyl (6) .
w WISy W| (f®gr)(x) if c>0
The advantage of using ratio (6) is that $ is not (f*90)(x) = f(x) if 0=0 (8)
singular then (6) is maximized when the column vectors of (feg0)(x) if 0<0

the projection matrix, W, are the eigenvectors &,'Ss. wheres denotes the scale parameter of the structuring func-
For a face database with classes and// total images, the tion.

rank of Sy, is at mostM — C and the rank ofSp is at  Such morphological operation can highlight and capture
mostC — 1. Thus, there are at most — 1 eigenvectors that important information for key facial features such as eyels:;
correspond to non zero eigenvaluesSgf'Ss. To cope with eyes, nose tip, nostrils, lips, face contour, etc. but can be
the fact thatSy, has rank(M — C) << n, fisherfaces where affected by different illumination conditions and noisé. [5o
proposed in [2]. Fisherfaces, is a two step dimensionaligbmpensate for these conditions, the normalized muléscal
reduction method. First the feature dimensionality is ol dilation-erosion is proposed for facial image analysisislt

to M — C dimensions using the eigenfaces approach in ordgell known that the different illumination conditions ate

for Sy to become non-singular. After that, the dimension ahe facial region in a non uniform manner. However, it can
the new features is reduced further using the criterionT6® safely be assumed that the illumination changes are locally
total dimensionality reduction transformation to< C' — 1 uniform inside the area of the structuring element used for

dimensions is: multiscale analysis. The proposed analysis is:
W/ =WiwW! er*n ©) (f @ o) (X) — fizec, (f(x—2)) it >0
- - . . (f*go)n(x) = f(x) if 0=0
where W!" and W7 are the first and the second dimen- (f ©910)(x) = pzeq,, (f(x +2)) if <0

sionality reduction transformations respectively. In [8hs 9)
shown that fisherfaces outperform eigenfaces only wher langhere pi,c, (f(x — z)) and uzec, (f(x + z)) are the mean
and representative training data sets are available. The mealues of the imagef(x —z), x—z € D and f(x + z),
problem of subspace methods is that they require the facak z € D inside the support area of the structuring element
images to be perfectly aligned [8]. That is, all the faciali, = {z € G : ||z|]| < o}, respectively. The structuring
images should be aligned in order to have all the fiducialement used in all experiments was cylindrical for compu-
points (e.g. eyes, nose, mouth, e.t.c.) represented aithe stational complexity reasons [5], [12]. The output of these
position inside the feature vector. For this purpose thé&facmorphological operations form the feature vecitx) at the
images are very often aligned manually and moreover thgyid node located at image coordinatesFigure 1 depicts the
are anisotropically scaled. Perfect automatic alignmenini output of the normalized dilation erosion for various ssale
general a difficult task to be assessed. The first nine pictures starting from the upper left cornes ar



eroded images and the remaining nine are dilated images. Tnaph is less than or equal to the predefined threshold. In
new dynamic link architecture will be denoted as normalizezthse of subspace methods the claim is considered valid if
morphological elastic graph matching (NMEGM) in the reghe euclidian distance between the test feature vector and
of the paper. one of the reference feature vectors is less than or equal
to the predefined threshold. For a given set of thresholds,
the performance of the verification system can be expressed
using the false acceptance rate (FAR) and the false refectio

rate (FRR). Accordingly, the plot of FRR versus FAR can be

created using as implicit parameter, the set of threshdlis.

plot forms the Receiver Operating Characteristic (ROCyeur

of the verification technique. The operating point used more
frequently for performance evaluation is the one having FAR

equal to FRR and is called Equal Error Rate (EER).
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Fig. 1. Output of normalized multi-scale dilation-erosiom fine scales. BS BSO0l [BSO |BS(3 . |
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The next step of the elastic graph matching is to translate ; 4
and deform the reference graph on the test image so that a co:36 Clients
function is minimized. Let the superscrigtandr denote a test
and a reference person (or grid), respectively. Thenorm,
is used as a similarity measure, between the feature vector
at the/th grid node of the reference and the test graph, i.e.
Cu(§(x1),i(x7)) = [li(x}) — j(x])]|. The objective is to find
a set of verticegx},! € V} that minimize the cost function:

D(t,T) = Zlev{cu(j(xf)vj(xf))} SUbjECt to

XM || XM01 | XM02 | XM_03

36 Client Claims

Test Set

Training Set

Fig. 2. The M2VTS protocol.
. . (10) The experiments were conducted in order to illustrate how
x;=x] +s+aq, |lal <aqmax the performance of each verification system varies when a

wheres is a global translation of the graph arg denotes Perfectimage alignment system is not available. In the diest

a local perturbation of the grid nodes. The choiceqpfiax Of €xperiments all images were aligned manually according t
controls the rigidity/plasticity of the graph. The cost étion the eyes position of each facial image. For subspace tesésiq
given by (10) defines the similarity measure between twfBe background was eliminated in order to diminish its intpac

persons, in the morphological elastic graph matching. in the verification procedure. This step is crucial for swusp
techniques since the remaining background around thel facia

V. EXPERIMENTAL RESULTS region reduces the verification performance. The achieved

The linear subspace techniques and the morphologiéﬁ‘Rs for the differgnt vgrification methods described i.rs thi
elastic graph matching presented in the previous sectid?@Pe’ are summarized in Table I. The best EER)%, is
have been tested on the M2VTS database [13]. The databdG@ieved using the novel multiscale morphological analysi
contains 37 persons’ video data. Four recordings (i.esghd’resented in Section Iil.
of the 37 persons have been collected. Only the luminance TABLE |
information has been considered in all verification techag COMPARISON OF EQUAL ERROR RATES FOR SUBSPACE AND ELASTIC
The experimental protocol is depicted in Figure 2 and is a8kkapH MATCHING VERIFICATION TECHNIQUES IN THE ALIGNED(A) AND
implementation of the "leave one out” principal. When this arrackep (v scALE (S) AND ROTATION (R)) M2V TS DATABASE.

protocol is applied to the M2VTS database, it gives a total of grfication Technique] EER(A) (%) | EER(R) (%) | EER(S) (%)
5328 impostor and 5328 client claims. The objective in the NMEGM 6.05 6.65 7.4
training procedure is to determine a threshold per person an MEGM 9.4 10.2 11.1

. . - | Eigenfaces 10-40 13.1-38 13-39
the distance measure. The linear transformations shoat al Fisherfaces 5376 9576 13T

be learned in case of subspace methods. The strategy u

ed

for choosing the thresholds is the one described in [5]. An
identity claim of a test person is considered as valid if the Assuming that a perfect alignment method is not available,
resulting similarity distance between the test and a refare every image of the aligned M2VTS database is attacked with a



random rotation, uniformly distributed i+-3, 3) degrees. The
minimum EER, for the subspace methods, is increased about
1.2—3.1%. Another attack considered, is scaling. Every image
of the aligned M2VTS database is attacked with a random
scaling, uniformly distributed in(—>5,5) pixels. That is, the
aligned face images are randomly scaled in such a way that the
distance between the eyes to be increased or decreased by
(—5,5) pixels. The minimum EER, for the linear subspace,
methods is increased abai¥ — 3.0%.

In Figure 2 it is shown that the training set, at each circle
of the "leave-one-out” protocol, is comprised of 36 diffiere
client classes and6 x 3 = 108 images. Thus, 107 is the
maximum number of eigenfaces and 35 is the maximum
number for fisherfaces that can be produced in the training
phase. Figure 3 shows the performance of the eigenfaces for
various feature dimensions, in the aligned and in the agthck
M2VTS database. Figure 4 describes the performance of fish-
erfaces verification system for various feature dimensitins
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Fig. 4. EER for various number of kept fisherfaces.
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unstable behavior and the performance deteriorates as more

discriminant dimensions are kept. On the contrary, elastic
graph matching is not so sensitive to geometric distortionéll
Thus, elastic graph matching is more reliable for real facg]
verification systems where perfect alignment is not avédlab
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Fig. 3. EER for various number of kept eigenfaces.

V. CONCLUSIONS [10]

In this paper a comparison between linear subspace meth
and elastic graph matching that use a novel morphological
multiscale analysis for frontal face verification was givenf-
ferent alignment conditions were considered. The experiate (12]
results confirmed the fact that the performance of subspagg
methods greatly depends on the alignment system used. On
the contrary, morphological elastic graph matching is rot s
sensitive to geometric distortions.
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