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Abstract. In this paper, we analyze a novel class of learning vector quantizers, namely weighted marginal
median learning vector quantizer. The nonlinear based learning vector quantizer is robust against outliers
and has better performance than the classical learning vector quantizer for some non-Gaussian distributions.
It is shown that weighted median learning quantizer demonstrates similar convergence behavior to its linear
counterpart. Simulations are carried to show that this type of nonlinear based learning vector quantizer will
tend to approximate to the density function of the input vector. Its applications to color image quantization
are considered and comparisons against its linear counterpart are made by simulations.

1 Introduction

Learning vector quantizer (LVQ) is an on-line
learning algorithm which updates the codebook
each time a training vector is presented and has
been shown to yield equal or better results than
the generalized Lloyd algorithm. the most widely
used technique to design vector codebooks [1, 2, 3].

On the other hand, when training vectors do not
obey multivariate Gaussian distribution, the linear
operation in classical LVQ no longer yields the op-
timal estimation. Linear estimators have also poor
performance against outliers. This motivated us
to explore a class of weighted median based LVQ,
where the input vectors are componentwise pro-
cessed.

Median estimators have been shown to be opti-
mal estimators for Laplacian distributions and are
robust against outliers. Their properties in the fil-
tering process have been studied extensively in past
years (4, 5].

The Weighted Marginal Median LVQ (WMM-
LVQ) can be defined as follows [6].

In p-dimension space, the winner reference vector
of a weighted marginal median LVQ is determined
by

Wc(n o ]-) = [xlwm’ T2wm,* ' " :B:Dwm]T
where
Xiwm = MED{ Cj1 oxi(n},Ciz 0 Gifn — 1),...,Ciy o x:{0) }. (1)

Note that N = n + 1 is the window size and z:(-)
is the set of the vector observations that have been
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assigned to each class. (Ciy,Cig,--+,Cin) is the

coeflicients for i-th reference vector.

2 Analysis

In the following, we shall use the efficiency p as the
measure to compare the performance of classical
LVQ and that of WMMLVQ.

The efficiency p is defined as the ratio of the
variances of the classical LVQ and WMMILVQ. i.e.

4 ZCLVQ

; : (2)
T WMMLVQ

p:

According to the statistical properties of WM op-
eration, we have the following property.
Theorem: The efficiency p can be expressed as
follows.

p = 4f3(to)o’

where o2 is the input variance and f(t), F(#) is the
input cdf and pdf, respectively,

1
fg = F_.l(-é')

The theorem reveals some interesting facts about
WMMLVQ. It shows that the performance of
WMMLVQ is consistent with respect to that of the
classical LVQ when both LVQs use the same weight
vector. Specifically, we have the following observa-
tions about WMMLVQ.



Observation 1: Any sufficient and (or) necessary
conditions which make the classical LVQ converge
are valid for WMMLVQ.

Observation 2: The p is independent of the sched-
ules (the adaptation steps) and is only the function
of input distribution.

Here we list some common distributions {p > 1
indicates WMMLVQ is better):

For Gaussian distribution, p =

For Laplacian distribution, p =

For the mixed distribution, i.e.
f(2) can be expressed:

2
=
2

the input pdf

K

HOEDWI0!

i=1
where

K
Z =1
i=2]

and f;({) denotes the pdfs of various data classes.
Denote m; and ;% the mean and variance of the
distribution Fi(), and m and o2 the mean and vari-
ance of input pdf f(¢). Then

K
m:Ze;mi
o _Zea, +Zeml —(Zem,

i=1 i=1

Suppose input classes are Gaussian distributions
with same mean m;, obviously

m o= my, t=1,--,

and F(m) = 1,

fim) =

The efficiency p
K N
2 2 €\
== &0y =
N

When K = 2, WMMLVQ will be better (¢ = 0.5)
if

565

For two classes of gaussian distributions N (ma, o1?)

and N{mq, 73°), the contaminated distribution is of
the form

flz)y = efalz) + (1 — €) fal )

Suppose that m; < my. The decision region for
class 1is z < d and for class 2 is = > d, where

= (my + my) /2.

The truncated distributions become

gi(z) = {efi(z) + (1 —e) fo(x))/ Fu. (3)
ga(z) = (efi(z) + (1 — e} falx))/(1 — Fy)
where

d
Fy= f_ F(z)dz

In order to evaluate the overali performance of
WMMIVQ, we introduce the average efficiency
which is defined as

K p 2.,
P i= 123-—1013

123 1 0 umij

(4)

In this case, the average efficiency p becomes

5= 49%(7”91)922(7”32)(0291 + ‘729‘2)
9% (mg1) + g2(mg)

The average efficiency is tabulated in Table 1 for
the Gaussian distributions fi(z) = N(5,0) and
fo(z) = N(10,0) with 0 = 1,2,3,4.5and 0 < e £
1. Table 2 is for Laplacian distribution with means
3. 10 and variances from 1 to 5. From the tables
we have the following observations:

Observation 1: WMMLVQ has better perfor-
mance than the classical LVQ when the distribution
is Laplacian, as we expected.

Observation 2: The average efficiency 7 is svm-
metric with respect to € = 0.5.

Observation 3: The average efficiency performs
consistently with increasing variance for the Lapla-
cian distributions, while for the Gaussian distribu-
tions the 5 is the best when o = 1 and the worst
when ¢ = 2, then it increases with the increasing
of o.

3 Simulations

As we know, the optimal VQ will approximate the
density function in most practical applications, It
has been demonstrated that the classical LVQ tend
to approximate to the density function of the input



Table 1: The average efficiency for the Gaussian distribution

[ g=1 =2 c=3 o4 g=35

0 | 0.6269 : 0.5761 | 0.5743 | 0.5771 | 0.5797
0.05 | 0.6453 | 0.6498 | 0.6025 | 0.5882 | 0.5852
0.10 | 0.6419 | 0.5644 | 0.5970 | 0.5901 | 0.5865
0.15 { 0.6353 | 0.5102 | 0.5834 | 0.5851 | 0.5858
0.20 § 0.6313 | 0.4945 | 0.5663 | 0.5803 | 0.5834
0.25 | 0.6284 | 0.4938 | 0.5533 | 0.5734 | 0.5809
0.30 | 0.6266 | 0.4979 | 0.5431 { 0.5684 | 0.5782
0.35 | 0.6253 | 0.5227 | 0.5362 | 0.5639 | 0.5759
0.40 [ 0.6245 | 0.5062 ! 0.5325 | 0.5612 | 0.5740
0.45 | 0.6240 | 0.5087 { 0.5293 | 0.5593 | 0.5727
0.50 | 0.6239 | 0.5095 | 0.3285 | 0.5585 | 0.5727
0.55 | 0.6240 | 0.5089 | 0.5300 | 0.55686 | 0.5728
0.60 | 0.6244 | 0.5068 | 0.53319 | 0.5612 | 0.5741
0.65 | 0.6251 | 0.5031 | 0.5388 | 0.5640 | 0.5759
0.70 { 0.6263 | 0.4986 | 0.5436 | 0.5684 | 0.5776
0.75 | 0.6280 | 0.4943 | 0.5527 | 0.5743 | 0.5803
0.80 | 0.6307 | 0.4950 | 0.5670 | 0.5797 | 0.5836
0.85 | 0.6346 | 0.5102 | 0.5828 | 0.5862 { 0.5858
0.90 | 0.6409 | 0.5640 | 0.5985 | 0.5894 | 0.5868
0.95 | 0.6443 | 0.6492 | 0.6019 | 0,5893 | 0.5853
1.00 | 0.6298 | 0.5765 | 0.5737 | 0.5775 [ 0.5798

vectors in an orderly fashion [1]. In order to inves-
tigate the behaviors of WMMLVQ, we conducted
the following simulation.

The input vectors were chosen to be two-
dimensional and uniformly distributed in a square.
At the beginning, each neural, which appears as
a point in the square, was selected randomly in
some area and all these neurals were connected by a
lattice of lines which indicate correlations between
these neurals. We used WMMLVQ to train these
neurals by the input vectors. The results are shown
in Fig. 1 and Fig. 2. Note that 900 neurals are used
here.

From the simulations one may observe that
WMMLYQs demonstrate similar behavior as their
linear counterparts. They tend to approximate the
density function of the input vectors, in this case
the uniform distribution. It is expected that with
more iterations the neural network will expand uni-
formly and finally reach the border of the square.

In order to demonstrate the performance of the
weighted median based LVQ in image processing.
We applied both the linear LVQ and WMMIVQ
to color image quantization. The image used in
the experiment is the RGB image "Lenna” with
512 x 480. 256 and 128 codewords were used. Both
the linear LVQ and WMMLV(Q were initialized by
LBG algorithm. The figures of merit are shown
in Table 3 and Table 4 for 256 codewords and 128
codewords, respectively. Note that training signals
were collected from the image by the decimation
factor in both directions.
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Table 2: The average efficiency for the Laplacian distribution

3 ag=1 g =2 o=273 g=4 =23
0 1.3489 1.1549 | 1.0796 | 1.0470 1.0306
0.05 | 1.2219 | 0.7478 | 0.9503 | 1,0188 | 1.0393
0.10 | 1.5938 | 0.7936 | 0.9443 | 1.0390 | 1.0454
0.15 | 1.6876 | 0.9487 | 0.9996 | 1.0848 | 1.0497
0.20 | 1.7187 | 1.0842 | 1.0721 | 1.0904 | 1.0543
0.25 | 1.7483 | 1.1859 | 0.1415 | 1.0938 | 1.0549
0.30 | 1.7580 | 1.2606 | 1.1¥85 | 1.0954 | 1.0571
0.35 | 1.7632 | 1.3240 | 1.1800 | 1.0969 | 1.0570
.40 | 17727 | 1.3684 | 1.1799 | 1.0974 | 1.0588
0.45 | 1.7960 | 1.3709 | 1.1794 | 1.0975 [ 1.0592
0.50 | 1.7953 § 1.3684 | 1.1792 | 1.0994 | 1.0591
0.55 § 1.7957 | 1.3661 | 1.1795 | 1.0995 [ 1.0593
0.60 { 1.7722 | 1.3686 | 1.1801 | 1.0976 | 1.0582
0.65 | 1.7624 [ 1.3242 | 1.1803 | 1.0972 | 1.0587
0.70 | 1.7667 | 1.2652 | 1.1761 | 1.0958 | 1.0574
0.75 | 1.7467 | 1.1904 | 1.1422 | 1.0923 | 1.0554
0.80 [ 1.716%7 | 1.0851 | 1.0730 | 1.0891 { 1.0533
0.85 | 1.6850 | 0.9499 | 1.0028 | 1.0857 { 1.0503
0.90 | 1.6907 | 0.7952 | 0.9455 | 1.0414 | 1.0447
0.95 | 1.2194 | 0.7488 | 0.9507 | 1.0190 | 1.0387
1.00 §{ 1.3417 | 1.1548 { 10794 | 1.0467 [ 1.0303

By inspecting Table 3 and Table 4, it is seen
that the weighted median LVQ achieves better re-
sults in most of cases, especially when the decima-
tion factor decreases, compared to the linear LVQ.
The best improvement of WMMLVQ over the lin-
ear LVQ is about 1.7 dB.

Table 3: Figures of merit, codewords=256

Decimation Linear LVQ WMMLVQ

factor PSNE {dB} | MAE | PSNR {dB} | MAE

1 31.41 9.37 32.61 7.83

2 31.85 8.91 32.71 7.78

4 32.37 8.37 32.70 7.80

3 32.66 7.95 32.52 7.94

16 32.16 B.27 31.95 8.46
Table 4: Figures of merit, codewords=128
Decimation Linear LVQ WMMLVQ

factor PSNR (dB) [ MAE | P5NR (dB) | MAE

1 29.08 12.34 30.73 9.75

2 29,44 11.79 30.94 9.59

4 30.00 10.96 30.85 9.66

8 30.66 10.12 30.85 9.72

16 30.65 9.99 30.43 10.18
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Figure 1: The neural network during the order pro-
cess for the classical LVQ

4 Conclusions

In this paper, we have introduced a novel class
of learning vector quantizers which are based on
weighted marginal median operations. The non-
linear based learning vector quantizer is robust
against outliers and has better performance than
the classical learning vector gquantizer for some non-
Gaussian distributions. It is shown by simulations
that weighted median learning quantizer demon-
strates similar convergence behavior to its linear
counterpart, i.e., those nonlinear based learning
vector quantizers will tend to approximate to the
density function of the input vector. They were
applied to color image quantization and compar-
isons against their linear counterparts are made by
simulations.
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