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ABSTRACT of repetitions is thes-fold cross-validation. During-fold cross-

) ) ) o validation the dataset is divided intoroughly equal subsets, the
A relationship between the variance of the prediction error com- samples in the — 1 subsets are used for training the classifier, and
mitted by the Bayes classifier and the mean prediction error waspe samples in the last subset are used for testing. The procedure
established by experiments in emotional speech classification wi-jg repeated for each one of thesubsets in a cyclic fashion and
thin a cross-validation framework in a previous work. This paper the prediction error is estimated by averaging the prediction errors
theoretically justifies the validity of the aforementioned relation- easured in the test phase of theepetitions. Burman proposed
ship. Furthermore, it proves that the new estimate of the variancene repeated-fold cross-validation for model selection, which is
of the prediction error, treated as a random variable itself, exhi- simply thes-fold cross-validation repeated many times [6]. The
bits a much smaller variance than the usual estimate obtained by, egiction error measured during cross-validation repetitions is a
cross-validation even for a small number of repetitions. Accordin- 3ndom variable that follows the Gaussian distribution. There-
gly, we claim that the proposed estimate is more accurate than th&gre, according to the central limit theorem (CLT), the more the
usual, straightforward, estimate of the variance of the prediction repetitions of the random variable are, the less varies the average

error obtained by applying cross-validation. prediction error. Throughout this paper, the repeatéald cross-
validation is simply denoted as cross-validation for short.
1. INTRODUCTION The outline of the paper is as follows. Section 2 deals with the

prediction error committed by the Bayes classifier. A theoretical
Two popular methods for estimating the prediction error of a clas- analysis of the factors that affect the variance of the prediction er-
sifier are bootstrap and cross-validation. In these methods, theror is made in Section 3. A comparison of the proposed method
available dataset is divided repeatedly into a set used for desi-that predicts the variance of the cross-validated prediction error
gning the classifier (i.e. the training set) and a set used for te-from a small number of repetitions against the usual estimate of
sting the classifier (i.e. the test set). By averaging the prediction the variance of the prediction error is presented in Section 4. Fi-
error over all repetitions, hopefully a more accurate estimate of nally, Section 5, concludes the paper by indicating future research
the prediction error is obtained than just using the prediction er- directions.
ror in one repetition of the experiment. Both cross-validation [1]
and bootstrap [2] stem from the jackknife method. Jackknife was
introduced by M. Quenouille for finding unbiased estimates of sta- 2. CLASSIFIER DESIGN
tistics, such as the sample mean and the sample variance [3, 4].
Originally, jackknife meant to divide the dataset into two equal | gtV = {u)V}¥, be asetofV samples, whergV = {w;, }X,
sets, to derive the target statistic over the two sets independentlyjs the feature set comprising featuresw;,. The samples can be
and next to average the statistic estimates in order to obtain an Ungonsidered as independent and identically distributed (i.i.d.) ran-
biased statistic. Later, jackknife was about to split the dataset into gom variables (r.vs) distributed according to the multivariate di-
many sets of equal cardinality. In another version, the statistic is stribution £ of the feature sexV. Each sample)” = (y), 1) is
estimated on the whole dataset except one sample, this procedurgeated as a pattern consisting of a measurement vegtoand a
is repeated in a cyclic fashion, and the average estimate is foundapels; € {1,2,...,C}, whereC is the total number of classes.

finally. The latter “leave-one-out” version dominates in practice. Let us predict the label of a sample by processing the fea-

Arewr:aw og!ackknlfe Va“alf‘és (_:an_ber:‘ound n [_5]'  the iackknif ture vectors using a classifier. Cross-validation (CV) calculates
The ordinary cross-validation is the extension of the jackknife o naan oveh — {1,2,..., B} prediction error estimates as

mettlod to derive f’;}n unbiased estimate of the prediction error iNfollows. Lets € (2,3,...,N/2} be the number of folders the
the “leave-one-out” sense [1]. The computational demands of the
ordinary cross-validation are rising proportionally to the number
of samples. A variant of cross-validation with a smaller number

data should be divided into. To find ti#h prediction error esti-
mate, Np = =N samples are randomly selected without re-
substitution fromu” to build the design sai}y, while the remai-
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class labeh predicted by the Bayes classifier is given by

n(y)") = argmax{p(y!”[20) P ()}, ()
where P,(2.) = N /N is the a priori class probabilityV.; is
the number of samples that belong to cl&ss ¢ = 1,2,...,C
in the bth cross-validation repetition, ang (y!”|Q.) is the class
conditional probability density function (pdf) of the sampi¥”
given(..

The class conditional pdf is modeled as a single Gaussian.

Two parameters for each clask. are required for a Gaussian
pdf, namely the mean vectgr, and the covariance matriX.. If
upy. = {uB,NQ.}, andNpy. is the number of samples 0}, .,
then the class sample mean vector and the class sample dispersi

matrix can be used as estimategQfand3., i.e.
N 1
e = N > Y @
e uVeug,
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If |T"| denotes the determinant of matdxand G() denotes the
Gaussian pdf, then the class conditional pdf is given by

1
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Let L[l;,n(yY")] denote the zero-one loss function between

the labell; and the predicted class labgly!”) for u!, i.e.

Llli,ny")] Z{ (1) :; él ;Zgwg

If err(F(u}),), uy,) is the error predicted by the Bayes classifier
F that is designed using the se¥), when it is applied to sa’,

for classification, then the CV estimate of prediction error in a
single repetitiord is

©)

CV2 (W) = err(F(up,), urs)

Z ‘C 17 yz L
WEu

(6)
whereNt = card(u,) is the cardinality of the test setY,. The
CV estimate of the prediction error ov& repetitions is given by

ch

McCVE (7)

and its variance is

vovyr — MCVEW™)]?.  (®)

-

In [7], it is experimentally found by using linear regression that

U:J \

2

VOV = TN

Wy = MOV>e (") (1—Mcv,;>°(uw)).

)

In the next section, theoretical evidence about (9) is provided andos.

discussed.

3. THEORETICAL ANALYSIS

Lemmal For atwo-class pattern recognition problem, when each
class pdf is modeled by a single Gaussian, the prediction error in
one CV repetition CV,?(u”V) can be approximated as a function
of the difference of the class means.

Proof Let us assume that the sat¥ = {u!Y}/, consists of
infinite samples ¥ = oo) that belong to two classe’., ¢ =
1,2. Each class conditional pdf(y | Q.) is a Gaussian pdf
G(y; pie, o2), wherep,. ando? are the sample mean and the sam-
ple variance for each clask., ¢ = 1, 2, respectively. Without any

loss of generality we assume > ui. Let P(2.) = N./N be
Otlt;eaprlorl probability of each class. In Figure B(2:)p(y | Q)
is plotted for each class as a function of the measurement yalue
P(Q1)p(y | )

Y

Fig. 1. Prediction error of a Bayes classifier based on a single
measurement for a two-class problem.

Lett andt’ denote the measurement values whg(€..)p(y |
Q.) for both classes are equal. The poiat$' can be found by
solving the equatioP(Q1)p(y | Q1) = P(Q2)p(y | Q2). The
exact solutions are derived in the Appendix. The prediction error
for ©; is the sum of area$; plus S;, while the prediction error
for class(2, is the areaS,. The total prediction error i, =
(S1+ S7) + Sa. Becauses] < S1, the termS? will be ignored.
Then

“+oo
P.= 81+ S = P(Q1) / p(y | Q)dy + P(Q).
t

[ byl @2y = § - P@)sga T ert(F 2+
— 00 1
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wheresgn(x) is the sign functionerf(x) is the error function de-

fined as

The proof of (10) can be found in [8].
Itis clearly seen thaP. is a function of variableg, 2, o1, o2,
andt. In the Appendix, it is shown that the ratjo— ) /oc, ¢ =

erf(z (1)

)dé,

1,2, is always a function ofic — p1. Leto = p2 — p1. Then,P.
can be rewritten as
Pe(t, pa, p2,01,02) = Pe(0,01,02) (12)

The maximum prediction erraP. is 0.5, whenp = 0 ando; =
In Figure 2, P.(p,01,02) is plotted forp € (—o0,+00),
wheno; = o5 using (10).



Pe a straight line in a small area abautt, o”, ande®. From Figure
P.(o) 3, one can deduce that the variancef ;') is smaller than the
variance ofP. (of), and moreover, the variance Bf (of’) is grea-

ter than the variance df.(o5). Let P.(o) = acop + 5 where

- 0 2 Too ac = tan(¢c). Then, the variance aP. (oY), according to the
. o . identity Var(az + 3) = a2Var(x) and (15) is
Fig. 2. Prediction error for a two-class proble,, as a function
of the difference of class means= p2 — p1. Var(Pe(gf)) = oko®. (19)

It can be seen in Figure 3 that ags — oo, thenac — 0, which
combined with (19) yields
Let us assume a finite number of samples. In each cross-
validation repetitiorb, to estimate the parametets,, oy, ¢ =
1,2, on the design setsY;, and N3, samples are selected from

the available dataset set. According to CLT [9], the sample meanssg it can be deduced from (19) and (20) thatr (Pe(of')) de-

lim Var(Pe(gl?)) =0. (20)

0C oo

of measurementg are distributed as pends on. |
ot ot , . .
e~ G, Nlb) =G(p1, Pb(Q1)N)’ (13) The just described Theorem 1 is extended to
o2 Theorem 2 VCV.E(w"V) is: (i) proportional to s, (ii) inversely
pao ~  G(uz, m)~ (14) proportional to N, and (iii) proportional to MCVZ(u")(1 —
MCVE(u")). On the contrary, VCV.” (u") depends on nei-
If op = p2v — p1p, then it can be shown that ther the cardinality of feature set WV, nor the number of classes C,
9 nor the prior probabilities P(Q.).
o ~ G(o,07), (15)
Proof Let Y, be the number of samples of the test set that are
where misclassified in one CV repetition. From (6) we simply have
e = p2—m, ) (16) Tir= Y L) (21)
o = A 2 an wleuy,

P,(Q1)N  Py(Q)N'

Let alsoProb{ Y;; = k} denote the probability the r.o(; - ad-
mits the integer valué at thebth CV repetition. IfP.p (o) is the
prediction error estimated from the design set atthaepetition,
then it can be inferred that; ;- follows the binomial distribution

Let VCV.E (u") be an estimate of the variance of the #(g,)
andMCV.P (u") be an estimate of the mean of rR. (,), when
the following assumptions are made to simplify the analysis:

e the design test is used for testing,
. U%b.’ O'SP, Py(€n), and P (22) are inva2riant through cross-  Prob{T5; = k} = ]\]:f (Pe’D(.Qb))k(l _ peD(Qb))NT*’ﬂ
validation repetitions and equal#g, o3, P(Q1), andP(Qz),
respectively. (22)
Accordingly, P. can be expressed as a function of one r.v.,d.e.

and therefore
and (17) reduces to

Var(YTyr) = N7 Pep(0)(1 — Pep(0v))- (23)

2 U% Ug
o’ = (18)
P(Q1)N  P(Q2)N If we assume that
which concludes the proof of Lemma 1. 1 E
N MCVE (%) = EZPeD(Qb% (24)
b=1

Henceforth,P. (o) is treated as a function of the ry.

Theorem 1 For a singleton feature set (i.e. one that contains isa bet_ter estimate of prediction error thBap (o), from (23) it
only onefeature), VOV, (u"”) dependson M CV.E (u?") for two can be inferred that

classes(i.e C' = 2). Var(T4) = NrMOVE (@) (1 - MCVE ™). (25)

Proof A qualitative proof will be made through an example that  Gjven (6), (8), and (21),
demonstrates the dependence®fp) on p. Let us derive the di-
stribution of P.(¢3'), P.(of), andP.(0Y) whenei', of, and o
are Gaussian r.vs. with meaps = 0, o”, ando®, respectively
and equal standard deviations, as shown in Figure 3. . o
At the bottom of Figure 3, the pdfs af?, o7, of are plotted Given thatN+ = N/s, (25), and (26), it is concluded that

downwards to maintain readability. In the right side, the pdfs of s

P.(01"), P.(0f), and P.(oY) are calculated by the projection of VeovE () = NMCVeB(“W)(l - MCVS ™). 1
oit, 08, of over the curveP, (o), whenP. (o) is approximated by (27)

Th_ 1

B Wy _ _
VCV (u )—Var(NT)— NZ

Var(Y7). (26)
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Fig. 3. Prediction erroiP. in a two-class problem as a function @for three casesl, B, C.

The result (27) confirms that C'V.” (u") depends o/ CV,7 ( According to CLT its variance foB repetitionsV CV,2;,.(u"V) is
"), as Theorem 1 asserts. From the comparison of (27) deriveda r.v. that follows they%_, distribution, i.e.

theoretlcally, and (9) obtained on experimental basis, it becomes

evident that (27) should be multlplled by the fac% for B = B-1

the VOV (uW)

dlfference between (9) and (27) becomes negllglble We believe )
=~ reflects a relationship between design and Given thatVar(az) = a*Var(z), and the fact thatar(x;,) =

VC‘/e dl'l’( ) XQB—I- (31)

test sets. s 2n, wherea, n are constants, from (31) we obtain
An accurate estimate & C'V.>°(u"V) can be obtained by just w2
employing an estimat&/ CV.!* (u"V) of MCV, > (u"V) with B = 5w (VCVJ’O(U ))
10 cross-validation repetitions, i.e. Var(VOViar(u™)) = 2-—F———. (32
———0 2 From (9) and (32), it is inferred that
VoV, (W)~ —2 MoV (1—Mcv;°(uw)). (9) and (32)
(s +V2)N 2s*
(28) Var(VOV.E,, (u")) =
The gains obtained by using (28) in order to estimaV,> (u"") (B —1)(s + V2)2N?
i i i i 2 2

are theoretically derived in Section 4. (MCVfo(uW)> <1 B MCVEOO(uW)> . (33)

4. GAINSOBTAINED BY THE PROPOSED METHOD Denominator: The variance ofCV!(u"V) from B repetitions

with the proposed method is the function

LetVCV.E i (1 ") be the variance of prediction error directly ca- )

Iculated using (8) forB repetitions, and/CV, pmp(u ) be th_e VCVBpmp (u W) _ S MCVFB(UW)
variance of prediction error estimated by (28), E)lrepetltlons in ’ (s +V2)N
general instead of 10. In order to show tha€'V,2,,,,(u"") is B, W
more accurate than CV,%,,.(u"), the following gain factos is (1 - MCV (u )>’ (34)
defined
. Var(VCVE, (™)) of the r.v. MCV,” (0"V), where according to CLT
0= iaa . (29)
Var(VCVE; o (uW)) 00 (1 W
" MOVE W) ~ g (moves ), Y)Y g

If § > 1, the proposed method finds an estimat&afV,>* (u")

that varies much smaller than that of the variance estimate deli-
vered by cross-validation, and therefore the proposed method is
better than the straight forward cross-validation. The nominator
and the denominator of (29) are derived separately.

Nominator: SinceCV,?(u"") is a binomial r.v., it can be appro-

To derive approximatelyar (VCV,},,,, (u’")), the funda-
mental theorem governing the transformation of one r.v. [9] is ap-
plied. In Figure 4 the function

ximated by a Gaussian r.v [10], if R(Mcveoo(uw)) = mMCVe%(UW)
NMC’Ve°°(uW)<1 - Mc*v;”(uw)) >925.  (30) (1 M CVEOO(“W)>’ (36)



R(MCV;"(uW)>

fF(MCVE (™))

0 MOV (u™) 1
CV.(u")

Fig. 4. Approximation Off(VCVeB(uW)) by using the derivative of the cure.

is plotted.

The pdf of MCV.E (u"V) is plotted on axisz and the pdf of
VCVE (u") is plotted on axig. It can be seen that the pdf of
VOVE, ., (0") is the projection o/ C'V.? (u™) on the curve
R(MCV>(u")). The curveR(MCV,*(u")) can be appro-
ximated with a straight ling = tan(y)x + 3 over the area above
the pdf of M CV.Z (u"), where

dR(Mcv;O(uW)> 2

tan(@) = dMCVeoo(uW) = (8+\/§)N
(1 - ZMC\/:O(uW)>.

(37)

Given thatVar(tan(p)z + 8) = (tan(cp))ZVar(m), from (34)
and (37) we obtain

84

var(vcnimp.(uw)) = 51 v2eNe

(1 - 2MCVe°°(uW)> Var (Mcvf(uw)> . (38)
Then, from (9), (35) and (38), we find
B Wi\ s° 0o/ W
VC"T(VC‘/e;propA(u )> - (S + \/i)SNSBMC‘/e (u )
(1- meveE@) (1- chvso(uW))Q. (39)

By using (29), (33), and (39), is found to be

B(s + V) MCV,;’C(uW)(l - MCV':O(uW))

=N p

2
(1 - 2MCV;°°(uW)>
(40)
From (40), it is inferred that the gain factéis:
e proportional to the total number of sampl®¥s

e not affected dramatically from the number of cross-validation,,ii, the t

repetitionsB,
e almost inversely proportional to folder numher

e maximized whem\/CV>°(u”V) — 0.5, whereas it is mi-
nimized whenM CV>° (u”Y) — 0 or MOV (V) — 1.

By ignoring B in (40), the gain is greater than 1 when

N(s++2)
N(s+V?2) + 252

N(s++/2)
0.5 + 0'5\/—1\7(3 V3 43

For example, when the number of foldessequals 2 and the totall
number of samples is 1000, it can be inferred from (41) that the
gain is greater than 1 1.001 < MCV>(w"Y) < 0.999. The

gain is smaller than 1 wheh C'V.>°(uV) approaches 0, i.e. the
classes are well separated or whefCV>°(u"V) — 1, which
means random classification for a great number of classes. Gain
values higher than 900 are obtained\d&'V,>* (u”) tends to 0.5,

for any number of classes. In such cased/ar (VCV,/2,,, (u”)

e;prop.
) — 0, and therefor&/CV.2 . (u"V) — VOV ("), ie.
VOVE, ., (0"Y) can be avery accurate estimatohaf V> (u””

), even forB = 10 repetitions.

05—0.5 <McvzEuW) <

(41)

5. CONCLUSIONS

In this paper, we studied the cross-validation method, when it is
applied to obtain an unbiased estimator of the prediction error. On
the grounds of experimental findings [7] and the presented theo-
retical analysis, we derived Eq. (9) that relates the variance of
the prediction error with the mean value of the prediction error by
employing an infinite number of cross-validation repetitions. The
theoretical analysis began with the variance of the prediction error
committed by the Bayes classifier using univariate Gaussian class
pdfs (Theorem 1) and extended for any dimensionality and any
number of classes (Theorem 2). The main result came out of this
theoretical analysis, i.e. Eq. (27), indicates that by a multiplicative
factor “\/5 the experimentally derived relationship (9) conforms
heoretically derived one (27).

Although the proposed equation (9) is valid for an infinite
number of cross-validation repetitions, it is proved that the va-




riance of the prediction error, treated as an r.v. itself, exhibits a
variance that could be 900 smaller than that delivered by cross-
validation even for a finite number of repetitions, say 10. By ex-
ploiting the main result of the paper in (28) we succeeded to speed
up floating forward feature selection algorithm [11] within the fra-
mework of emotional speech classification [7]. The relationships
between the sample estimates of the variance and the mean of the
prediction error can be extended to other estimates such as the boo-
tstrap estimates.

Appendix

Given thatp(y|21) andp(y|€2:1 ) are Gaussians, then we prove that
the ratiost‘%, 1 = 1, 2 for all the solutions of

o

P(4)

1

Xp{—5(

t—pz
02

_ P,

)’}
(42)

(Lt

01

1
exp{— 3 =

are always functions Qs — 1.

Proof (42) leads to

t* (05 —03) +t(2p207 —2p103) + pios — psor —20505A =0

e If 01 = 02 = o, there is a single solution

-y p2+m a? P(O)
t=—= 1 , 50
B 2 B2 — n(P(Qa)) (50)
and therefore,
t— P2 — i o P(Q1)
= + 1 , (b1
[ 20 M2 — [1 n(P(Qz)) ( )
t— o P2 — o P(Q4)
— — + 1 , (52
g 20 M2 — M1 n( P(Qz)) ( )
which are functions ofia — 1.
o If 01 =02 =0 andP(Ql) = P(Qg) then,
2 2 2
-y _ —o(pi—pp) 1
t=—=— "= = — + 53
3 20’2(/1/2 — Ml) 2 (1“‘2 /141) (53)
and the ratios are
t— 1 p2 — p1
o 5 (54)
t— 2 2 —
— EEr (55)

From (48), (49), (51), (52), (54), and (55), it can be inferreat th

ao P(2
whereA = In ;P—ggg;.
e If o1 # o2 andP (1) # P(Q2), there are two solutions
—B4+ /682 —4
tie = W, where (44)
oY o3 — o1, (45)
B = 207 — 203, (46)
¥ (1102)* = (n201)* — 2(0102)*A. (47)
If

52 —day = (20102)*{(u2 — m)* +2(03 — a1)A} >0,

then (44) leads to

105 — p2ot (p2 — p1)? 2A
t1,2 = +o g2 .
o3 —of \/(030?)2 o5 —of
Then
t12 — p1 — (42— ) o1 4
o T
(p2 — pa)? 2A
48
”¢@—ﬁ? e “9)
and
t1,2 — p2 02
22 _ 2 4
oo (:LLQ Hl)o’% — O'%
— )2 2A
o1 (lu‘z /-‘L;) + 5 - (49)
(053 —0f)?* o3 1

which are indeed functions @f; — 1.

the ratiost=£1

(1]

(2]
(3]
(4]
(5]
(6]

(7]

(8]

El

(10]

(11]

.1 = 1,2, are always functions qfs — p1. |
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