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ABSTRACT

A relationship between the variance of the prediction error com-
mitted by the Bayes classifier and the mean prediction error was
established by experiments in emotional speech classification wi-
thin a cross-validation framework in a previous work. This paper
theoretically justifies the validity of the aforementioned relation-
ship. Furthermore, it proves that the new estimate of the variance
of the prediction error, treated as a random variable itself, exhi-
bits a much smaller variance than the usual estimate obtained by
cross-validation even for a small number of repetitions. Accordin-
gly, we claim that the proposed estimate is more accurate than the
usual, straightforward, estimate of the variance of the prediction
error obtained by applying cross-validation.

1. INTRODUCTION

Two popular methods for estimating the prediction error of a clas-
sifier are bootstrap and cross-validation. In these methods, the
available dataset is divided repeatedly into a set used for desi-
gning the classifier (i.e. the training set) and a set used for te-
sting the classifier (i.e. the test set). By averaging the prediction
error over all repetitions, hopefully a more accurate estimate of
the prediction error is obtained than just using the prediction er-
ror in one repetition of the experiment. Both cross-validation [1]
and bootstrap [2] stem from the jackknife method. Jackknife was
introduced by M. Quenouille for finding unbiased estimates of sta-
tistics, such as the sample mean and the sample variance [3, 4].
Originally, jackknife meant to divide the dataset into two equal
sets, to derive the target statistic over the two sets independently,
and next to average the statistic estimates in order to obtain an un-
biased statistic. Later, jackknife was about to split the dataset into
many sets of equal cardinality. In another version, the statistic is
estimated on the whole dataset except one sample, this procedure
is repeated in a cyclic fashion, and the average estimate is found
finally. The latter “leave-one-out” version dominates in practice.
A review of jackknife variants can be found in [5].

The ordinary cross-validation is the extension of the jackknife
method to derive an unbiased estimate of the prediction error in
the “leave-one-out” sense [1]. The computational demands of the
ordinary cross-validation are rising proportionally to the number
of samples. A variant of cross-validation with a smaller number
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of repetitions is thes-fold cross-validation. Durings-fold cross-
validation the dataset is divided intos roughly equal subsets, the
samples in thes−1 subsets are used for training the classifier, and
the samples in the last subset are used for testing. The procedure
is repeated for each one of thes subsets in a cyclic fashion and
the prediction error is estimated by averaging the prediction errors
measured in the test phase of thes repetitions. Burman proposed
the repeateds-fold cross-validation for model selection, which is
simply thes-fold cross-validation repeated many times [6]. The
prediction error measured during cross-validation repetitions is a
random variable that follows the Gaussian distribution. There-
fore, according to the central limit theorem (CLT), the more the
repetitions of the random variable are, the less varies the average
prediction error. Throughout this paper, the repeateds-fold cross-
validation is simply denoted as cross-validation for short.

The outline of the paper is as follows. Section 2 deals with the
prediction error committed by the Bayes classifier. A theoretical
analysis of the factors that affect the variance of the prediction er-
ror is made in Section 3. A comparison of the proposed method
that predicts the variance of the cross-validated prediction error
from a small number of repetitions against the usual estimate of
the variance of the prediction error is presented in Section 4. Fi-
nally, Section 5, concludes the paper by indicating future research
directions.

2. CLASSIFIER DESIGN

LetuW = {uW
i }N

i=1 be a set ofN samples, whereW = {wk}K
k=1

is the feature set comprisingK featureswk. The samples can be
considered as independent and identically distributed (i.i.d.) ran-
dom variables (r.vs) distributed according to the multivariate di-
stributionF of the feature setW. Each sampleuW

i = (yW
i , li) is

treated as a pattern consisting of a measurement vectoryW
i and a

labelli ∈ {1, 2, . . . , C}, whereC is the total number of classes.
Let us predict the label of a sample by processing the fea-

ture vectors using a classifier. Cross-validation (CV) calculates
the mean overb = {1, 2, . . . , B} prediction error estimates as
follows. Let s ∈ {2, 3, . . . , N/2} be the number of folders the
data should be divided into. To find thebth prediction error esti-
mate,ND = s−1

s
N samples are randomly selected without re-

substitution fromuW to build the design setuW
Db while the remai-

ninguW
T b of N

s
samples forms the test set.

The prediction error in CV repetitionb is the error committed
by the Bayes classifier. For sampleuW

i = (yW
i , li) ∈ uW

T b, the



class labelη predicted by the Bayes classifier is given by

η(yW
i ) =

C
arg max

c=1
{pb(y

W
i |Ωc)Pb(Ωc)}, (1)

wherePb(Ωc) = Ncb/N is the a priori class probability,Ncb is
the number of samples that belong to classΩc, c = 1, 2, . . . , C
in thebth cross-validation repetition, andpb(y

W
i |Ωc) is the class

conditional probability density function (pdf) of the sampleuW
i

givenΩc.
The class conditional pdf is modeled as a single Gaussian.

Two parameters for each classΩc are required for a Gaussian
pdf, namely the mean vectorµc and the covariance matrixΣc. If
uW
Dbc = {uW

Db∩Ωc}, andNDbc is the number of samples inuW
Dbc,

then the class sample mean vector and the class sample dispersion
matrix can be used as estimates ofµc andΣc, i.e.

µ̂
W
bc =

1

NDbc

∑

u
W
i

∈u
W
Dbc

y
W
i , (2)

Σ̂
W
bc =

1

NDbc

∑

u
W
i

∈u
W
Dbc

(yW
i − µ̂

W
bc )(yW

i − µ̂
W
bc )T . (3)

If |Γ| denotes the determinant of matrixΓ andG() denotes the
Gaussian pdf, then the class conditional pdf is given by

pb(y
W
i |Ωc) = G(yW

i ; µ̂W
bc , Σ̂W

bc ) =
1

(2π)
K

2 |ΣW
bc |

1

2

exp[−1

2
(yW

i − µ̂
W
bc )T (Σ̂W

bc )−1(yW
i − µ̂

W
bc )]. (4)

Let L[li, η(yW
i )] denote the zero-one loss function between

the labelli and the predicted class labelη(yW
i ) for uW

i , i.e.

L[li, η(yW
i )] =

{

0 if li = η(yW
i )

1 if li 6= η(yW
i )

. (5)

If err(F̂(uW
Db),u

W
T b) is the error predicted by the Bayes classifier

F̂ that is designed using the setuW
Db when it is applied to setuW

T b

for classification, then the CV estimate of prediction error in a
single repetitionb is

CV b
e (uW) = err(F̂(uW

Db),u
W
T b) =

1

NT

∑

u
W
i

∈u
W
T b

L[li, η(yW
i )],

(6)
whereNT = card(uW

T b) is the cardinality of the test setuW
T b. The

CV estimate of the prediction error overB repetitions is given by

MCV B
e (uW) =

1

B

B
∑

b=1

CV b
e (uW), (7)

and its variance is

V CV B
e (uW) =

1

B

B
∑

b=1

[CV b
e (uW) − MCV B

e (uW)]2. (8)

In [7], it is experimentally found by using linear regression that

V CV ∞
e (uW) =

s2

(s +
√

2)N
MCV ∞

e (uW)
(

1−MCV ∞
e (uW)

)

.

(9)
In the next section, theoretical evidence about (9) is provided and
discussed.

3. THEORETICAL ANALYSIS

Lemma 1 For a two-class pattern recognition problem, when each
class pdf is modeled by a single Gaussian, the prediction error in
one CV repetition CV b

e (uW) can be approximated as a function
of the difference of the class means.

Proof Let us assume that the setuW = {uW
i }N

i=1 consists of
infinite samples (N = ∞) that belong to two classesΩc, c =
1, 2. Each class conditional pdfp(y | Ωc) is a Gaussian pdf
G(y; µc, σ

2
c ), whereµc andσ2

c are the sample mean and the sam-
ple variance for each classΩc, c = 1, 2, respectively. Without any
loss of generality we assumeµ2 > µ1. Let P (Ωc) = Nc/N be
thea priori probability of each class. In Figure 1,P (Ωc)p(y | Ωc)
is plotted for each class as a function of the measurement valuey.

y

P (Ω1)p(y | Ω1)

P (Ω2)p(y | Ω2)

t′ t
S1

S2S
′

1

µ1 µ2

Fig. 1. Prediction error of a Bayes classifier based on a single
measurement for a two-class problem.

Let t andt′ denote the measurement values whereP (Ωc)p(y |
Ωc) for both classes are equal. The pointst, t′ can be found by
solving the equationP (Ω1)p(y | Ω1) = P (Ω2)p(y | Ω2). The
exact solutions are derived in the Appendix. The prediction error
for Ω1 is the sum of areasS1 plusS′

1, while the prediction error
for classΩ2 is the areaS2. The total prediction error isPe =
(S1 + S′

1) + S2. BecauseS′
1 ≪ S1, the termS′

1 will be ignored.
Then

Pe = S1 + S2 = P (Ω1)

∫ +∞

t

p(y | Ω1)dy + P (Ω2)·

·
∫ t

−∞
p(y | Ω2)dy =

1

2
− P (Ω1)sgn(

t − µ1

σ1
)erf(| t − µ1

σ1
|)+

P (Ω2)sgn(
t − µ2

σ2
)erf(| t − µ2

σ2
|) (10)

wheresgn(x) is the sign function,erf(x) is the error function de-
fined as

erf(x) =

∫ x

0

1√
2π

exp(−ξ2

2
)dξ, (11)

The proof of (10) can be found in [8].
It is clearly seen thatPe is a function of variablesµ1, µ2, σ1, σ2,

andt. In the Appendix, it is shown that the ratio(t−µc)/σc, c =
1, 2, is always a function ofµ2 − µ1. Let ̺ = µ2 − µ1. Then,Pe

can be rewritten as

Pe(t, µ1, µ2, σ1, σ2) = Pe(̺, σ1, σ2) (12)

The maximum prediction errorPe is 0.5, when̺ = 0 andσ1 =
σ2. In Figure 2,Pe(̺, σ1, σ2) is plotted for̺ ∈ (−∞, +∞),
whenσ1 = σ2 using (10).
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−∞ +∞0 ̺

Fig. 2. Prediction error for a two-class problem,Pe, as a function
of the difference of class means̺ = µ2 − µ1.

Let us assume a finite number of samples. In each cross-
validation repetitionb, to estimate the parametersµcb, σcb, c =
1, 2, on the design sets,N1b andN2b samples are selected from
the available dataset set. According to CLT [9], the sample means
of measurementsy are distributed as

µ1b ∼ G(µ1,
σ2

1

N1b

) = G(µ1,
σ2

1

Pb(Ω1)N
), (13)

µ2b ∼ G(µ2,
σ2

2

Pb(Ω2)N
). (14)

If ̺b = µ2b − µ1b, then it can be shown that

̺b ∼ G(̺, σ2), (15)

where

̺ = µ2 − µ1, (16)

σ2 =
σ2

1

Pb(Ω1)N
+

σ2
2

Pb(Ω2)N
. (17)

Let V CV B
e (uW) be an estimate of the variance of the r.v.Pe(̺b)

andMCV B
e (uW) be an estimate of the mean of r.v.Pe(̺b), when

the following assumptions are made to simplify the analysis:

• the design test is used for testing,

• σ2
1b, σ

2
2b, Pb(Ω1), andPb(Ω2) are invariant through cross-

validation repetitions and equal toσ2
1 , σ2

2 , P (Ω1), andP (Ω2),
respectively.

Accordingly,Pe can be expressed as a function of one r.v., i.e.̺b,
and (17) reduces to

σ2 =
σ2

1

P (Ω1)N
+

σ2
2

P (Ω2)N
(18)

which concludes the proof of Lemma 1.

Henceforth,Pe(̺) is treated as a function of the r.v.̺.

Theorem 1 For a singleton feature set (i.e. one that contains
only one feature), V CV B

e (uW) depends on MCV B
e (uW) for two

classes (i.e. C = 2).

Proof A qualitative proof will be made through an example that
demonstrates the dependence ofPe(̺) on ̺. Let us derive the di-
stribution ofPe(̺

A
b ), Pe(̺

B
b ), andPe(̺

C
b ) when̺A

b , ̺B
b , and̺C

b

are Gaussian r.vs. with means̺A = 0, ̺B , and̺C , respectively
and equal standard deviations, as shown in Figure 3.

At the bottom of Figure 3, the pdfs of̺Ab , ̺B
b , ̺C

b are plotted
downwards to maintain readability. In the right side, the pdfs of
Pe(̺

A
b ), Pe(̺

B
b ), andPe(̺

C
b ) are calculated by the projection of

̺A
b , ̺B

b , ̺C
b over the curvePe(̺), whenPe(̺) is approximated by

a straight line in a small area about̺A, ̺B , and̺C . From Figure
3, one can deduce that the variance ofPe(̺

A
b ) is smaller than the

variance ofPe(̺
B
b ), and moreover, the variance ofPe(̺

B
b ) is grea-

ter than the variance ofPe(̺
C
b ). Let Pe(̺

C
b ) = αC̺b + β where

αC = tan(φC). Then, the variance ofPe(̺
C
b ), according to the

identityV ar(αx + β) = α2V ar(x) and (15) is

V ar
(

Pe(̺
C
b )
)

= α2
Cσ2. (19)

It can be seen in Figure 3 that as̺C → ∞, thenαC → 0, which
combined with (19) yields

lim
̺C→∞

V ar
(

Pe(̺
C
b )
)

= 0. (20)

So, it can be deduced from (19) and (20) thatV ar
(

Pe(̺
C
b )
)

de-
pends on̺ C .

The just described Theorem 1 is extended to

Theorem 2 V CV B
e (uW) is: (i) proportional to s, (ii) inversely

proportional to N , and (iii) proportional to MCV B
e (uW)

(

1 −
MCV B

e (uW)
)

. On the contrary, V CV B
e (uW) depends on nei-

ther the cardinality of feature set W , nor the number of classes C,
nor the prior probabilities P (Ωc).

Proof Let Υe
bT be the number of samples of the test set that are

misclassified in one CV repetition. From (6) we simply have

Υe
bT =

∑

u
W
i

∈u
W
T b

L[li, η(yW
i )]. (21)

Let alsoProb
{

Υe
bT = k

}

denote the probability the r.v.Υe
bT ad-

mits the integer valuek at thebth CV repetition. IfPeD(̺b) is the
prediction error estimated from the design set at thebth repetition,
then it can be inferred thatΥe

bT follows the binomial distribution

Prob
{

Υe
bT = k

}

=

(

NT

k

)

(

PeD(̺b)
)k(

1 − PeD(̺b)
)NT −k

,

(22)

and therefore

V ar(Υe
bT ) = NT PeD(̺b)

(

1 − PeD(̺b)
)

. (23)

If we assume that

MCV B
e (uW) =

1

B

B
∑

b=1

PeD(̺b), (24)

is a better estimate of prediction error thanPeD(̺b), from (23) it
can be inferred that

V ar(Υe
T ) = NT MCV B

e (uW)
(

1 − MCV B
e (uW)

)

. (25)

Given (6), (8), and (21),

V CV B
e (uW) = V ar(

Υe
T

NT
) =

1

N2
T

V ar(Υe
T ). (26)

Given thatNT = N/s, (25), and (26), it is concluded that

V CV B
e (uW) =

s

N
MCV B

e (uW)
(

1 − MCV B
e (uW)

)

.

(27)
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Fig. 3. Prediction errorPe in a two-class problem as a function of̺ for three casesA, B, C.

The result (27) confirms thatV CV B
e (uW) depends onMCV B

e (
uW), as Theorem 1 asserts. From the comparison of (27) derived
theoretically, and (9) obtained on experimental basis, it becomes
evident that (27) should be multiplied by the factors

s+
√

2
for B =

∞. However, whens >> 1 then s

s+
√

2
→ 1. Accordingly, the

difference between (9) and (27) becomes negligible. We believe
that the factor s

s+
√

2
reflects a relationship between design and

test sets.
An accurate estimate ofV CV ∞

e (uW) can be obtained by just
employing an estimateMCV 10

e (uW) of MCV ∞
e (uW) with B =

10 cross-validation repetitions, i.e.

V̂ CV
∞
e (uW) ≃ s2

(s +
√

2)N
MCV 10

e (uW)
(

1−MCV 10
e (uW)

)

.

(28)
The gains obtained by using (28) in order to estimateV CV ∞

e (uW)
are theoretically derived in Section 4.

4. GAINS OBTAINED BY THE PROPOSED METHOD

Let V CV B
e;dir(u

W) be the variance of prediction error directly ca-
lculated using (8) forB repetitions, andV CV B

e;prop(u
W) be the

variance of prediction error estimated by (28), forB repetitions in
general instead of 10. In order to show thatV CV B

e;prop(u
W) is

more accurate thanV CV B
e;dir(u

W), the following gain factorδ is
defined

δ ,
V ar

(

V CV B
e;dir(u

W)
)

V ar
(

V CV B
e;prop(uW)

) . (29)

If δ > 1, the proposed method finds an estimate ofV CV ∞
e (uW)

that varies much smaller than that of the variance estimate deli-
vered by cross-validation, and therefore the proposed method is
better than the straight forward cross-validation. The nominator
and the denominator of (29) are derived separately.
Nominator: SinceCV b

e (uW) is a binomial r.v., it can be appro-
ximated by a Gaussian r.v [10], if

NMCV ∞
e (uW)

(

1 − MCV ∞
e (uW)

)

> 25. (30)

According to CLT its variance forB repetitionsV CV B
e;dir(u

W) is
a r.v. that follows theχ2

B−1 distribution, i.e.

B − 1

V CV ∞
e (uW)

V CV B
e;dir(u

W) ∼ χ2
B−1. (31)

Given thatV ar(ax) = a2V ar(x), and the fact thatV ar(χ2
n) =

2n, wherea, n are constants, from (31) we obtain

V ar(V CV B
e;dir(u

W)) = 2

(

V CV ∞
e (uW)

)2

B − 1
. (32)

From (9) and (32), it is inferred that

V ar
(

V CV B
e;dir(u

W)
)

=
2s4

(B − 1)(s +
√

2)2N2

(

MCV ∞
e (uW)

)2(

1 − MCV ∞
e (uW)

)2

. (33)

Denominator: The variance ofCV b
e (uW) from B repetitions

with the proposed method is the function

V CV B
e;prop.(u

W) =
s2

(s +
√

2)N
MCV B

e (uW)

(

1 − MCV B
e (uW)

)

, (34)

of the r.v.MCV B
e (uW), where according to CLT

MCV B
e (uW) ∼ G

(

MCV ∞
e (uW),

V CV ∞
e (uW)

B

)

. (35)

To derive approximatelyV ar
(

V CV B
e;prop.(u

W)
)

, the funda-
mental theorem governing the transformation of one r.v. [9] is ap-
plied. In Figure 4 the function

R
(

MCV ∞
e (uW)

)

=
s

(s +
√

2)N
MCV ∞

e (uW)

(

1 − MCV ∞
e (uW)

)

, (36)
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(
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R
(

MCV ∞
e (uW)

)

Fig. 4. Approximation off
(

V CV B
e (uW)

)

by using the derivative of the curveR.

is plotted.
The pdf ofMCV B

e (uW) is plotted on axisx and the pdf of
V CV B

e (uW) is plotted on axisy. It can be seen that the pdf of
V CV B

e;prop.(u
W) is the projection ofMCV B

e (uW) on the curve
R
(

MCV ∞
e (uW)

)

. The curveR
(

MCV ∞
e (uW)

)

can be appro-
ximated with a straight liney = tan(ϕ)x + β over the area above
the pdf ofMCV B

e (uW), where

tan(ϕ) =
dR
(

MCV ∞
e (uW)

)

dMCV ∞
e (uW)

=
s2

(s +
√

2)N
(

1 − 2MCV ∞
e (uW)

)

. (37)

Given thatV ar(tan(ϕ)x + β) =
(

tan(ϕ)
)2

V ar(x), from (34)
and (37) we obtain

V ar
(

V CV B
e;prop.(u

W)
)

=
s4

(s +
√

2)2N2

(

1 − 2MCV ∞
e (uW)

)2

V ar
(

MCV B
e (uW)

)

. (38)

Then, from (9), (35) and (38), we find

V ar
(

V CV B
e;prop.(u

W)
)

=
s6

(s +
√

2)3N3B
MCV ∞

e (uW)

(

1 − MCV ∞
e (uW)

)(

1 − 2MCV ∞
e (uW)

)2

. (39)

By using (29), (33), and (39),δ is found to be

δ = 2N
B(s +

√
2)

(B − 1)s2

MCV ∞
e (uW)

(

1 − MCV ∞
e (uW)

)

(

1 − 2MCV ∞
e (uW)

)2 .

(40)
From (40), it is inferred that the gain factorδ is:

• proportional to the total number of samplesN ,

• not affected dramatically from the number of cross-validation
repetitionsB,

• almost inversely proportional to folder numbers,

• maximized whenMCV ∞
e (uW) → 0.5, whereas it is mi-

nimized whenMCV ∞
e (uW) → 0 or MCV ∞

e (uW) → 1.

By ignoringB in (40), the gainδ is greater than 1 when

0.5 − 0.5

√

N(s +
√

2)

N(s +
√

2) + 2s2
< MCV ∞

e (uW) <

0.5 + 0.5

√

N(s +
√

2)

N(s +
√

2) + 2s2
. (41)

For example, when the number of folders,s, equals 2 and the total
number of samples is 1000, it can be inferred from (41) that the
gain is greater than 1 if0.001 < MCV ∞

e (uW) < 0.999. The
gain is smaller than 1 whenMCV ∞

e (uW) approaches 0, i.e. the
classes are well separated or whenMCV ∞

e (uW) → 1, which
means random classification for a great number of classes. Gain
values higher than 900 are obtained asMCV ∞

e (uW) tends to 0.5,
for any number of classesC. In such cases,V ar

(

V CV B
e;prop.(u

W)
)

→ 0, and thereforeV CV B
e;prop.(u

W) → V CV ∞
e (uW), i.e.

V CV B
e;prop.(u

W) can be a very accurate estimator ofV CV ∞
e (uW

), even forB = 10 repetitions.

5. CONCLUSIONS

In this paper, we studied the cross-validation method, when it is
applied to obtain an unbiased estimator of the prediction error. On
the grounds of experimental findings [7] and the presented theo-
retical analysis, we derived Eq. (9) that relates the variance of
the prediction error with the mean value of the prediction error by
employing an infinite number of cross-validation repetitions. The
theoretical analysis began with the variance of the prediction error
committed by the Bayes classifier using univariate Gaussian class
pdfs (Theorem 1) and extended for any dimensionality and any
number of classes (Theorem 2). The main result came out of this
theoretical analysis, i.e. Eq. (27), indicates that by a multiplicative
factor s

s+
√

2
the experimentally derived relationship (9) conforms

with the theoretically derived one (27).
Although the proposed equation (9) is valid for an infinite

number of cross-validation repetitions, it is proved that the va-



riance of the prediction error, treated as an r.v. itself, exhibits a
variance that could be 900 smaller than that delivered by cross-
validation even for a finite number of repetitions, say 10. By ex-
ploiting the main result of the paper in (28) we succeeded to speed
up floating forward feature selection algorithm [11] within the fra-
mework of emotional speech classification [7]. The relationships
between the sample estimates of the variance and the mean of the
prediction error can be extended to other estimates such as the boo-
tstrap estimates.

Appendix

Given thatp(y|Ω1) andp(y|Ω1) are Gaussians, then we prove that
the ratiost−µi

σi
, i = 1, 2 for all the solutions of

P (Ω1)

σ1
exp{−1

2
(
t − µ1

σ1
)2} =

P (Ω2)

σ2
exp{−1

2
(
t − µ2

σ2
)2},

(42)
are always functions ofµ2 − µ1.

Proof (42) leads to

t2(σ2
2 −σ2

1)+ t(2µ2σ
2
1 −2µ1σ

2
2)+µ2

1σ
2
2 −µ2

2σ
2
1 −2σ2

1σ2
2Λ = 0

whereΛ = ln σ2P (Ω1)
σ1P (Ω2)

.

• If σ1 6= σ2 andP (Ω1) 6= P (Ω2), there are two solutions

t1,2 =
−β ±

√

β2 − 4αγ

2α
, where (44)

α = σ2
2 − σ2

1 , (45)

β = 2µ2σ
2
1 − 2µ1σ

2
2 , (46)

γ = (µ1σ2)
2 − (µ2σ1)

2 − 2(σ1σ2)
2Λ. (47)

If

β2 − 4αγ = (2σ1σ2)
2{(µ2 − µ1)

2 + 2(σ2
2 − σ2

1)Λ
}

> 0,

then (44) leads to

t1,2 =
µ1σ

2
2 − µ2σ

2
1

σ2
2 − σ2

1

± σ1σ2

√

(µ2 − µ1)2

(σ2
2 − σ2

1)2
+

2Λ

σ2
2 − σ2

1

.

Then

t1,2 − µ1

σ1
= −(µ2 − µ1)

σ1

σ2
2 − σ2

1

±

σ2

√

(µ2 − µ1)2

(σ2
2 − σ2

1)2
+

2Λ

σ2
2 − σ2

1

, (48)

and

t1,2 − µ2

σ2
= (µ2 − µ1)

σ2

σ2
2 − σ2

1

±

σ1

√

(µ2 − µ1)2

(σ2
2 − σ2

1)2
+

2Λ

σ2
2 − σ2

1

, (49)

which are indeed functions ofµ2 − µ1.

• If σ1 = σ2 = σ, there is a single solution

t =
−γ

β
=

µ2 + µ1

2
+

σ2

µ2 − µ1
ln(

P (Ω1)

P (Ω2)
), (50)

and therefore,

t − µ1

σ
=

µ2 − µ1

2σ
+

σ

µ2 − µ1
ln(

P (Ω1)

P (Ω2)
), (51)

t − µ2

σ
= −µ2 − µ1

2σ
+

σ

µ2 − µ1
ln(

P (Ω1)

P (Ω2)
), (52)

which are functions ofµ2 − µ1.

• If σ1 = σ2 = σ andP (Ω1) = P (Ω2) then,

t =
−γ

β
=

−σ2(µ2
1 − µ2

2)

2σ2(µ2 − µ1)
=

1

2
(µ2 + µ1) (53)

and the ratios are

t − µ1

σ
=

µ2 − µ1

2σ
, (54)

t − µ2

σ
= −µ2 − µ1

2σ
. (55)

From (48), (49), (51), (52), (54), and (55), it can be inferred that
the ratiost−µi

σi
, i = 1, 2, are always functions ofµ2 − µ1.
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