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ABSTRACT

Emotional speech classification can be treated as a supervised
learning task where the statistical properties of emotional speech
segments are the features and the emotional styles form the la-
bels. The Akaike criterion is used for estimating automatically the
number of Gaussian densities that model the probability density
function of the emotional speech features. A procedure for re-
ducing the computational burden of crossvalidation in sequential
floating forward selection algorithm is proposed that applies the
t-test on the probability of correct classification for the Bayes clas-
sifier designed for various feature sets. For the Bayes classifier, the
sequential floating forward selection algorithm is found to yield a
higher probability of correct classification by 3% than that of the
sequential forward selection algorithm either taking into account
the gender information or ignoring it. The experimental results in-
dicate that the utterances from isolated words and sentences are
more colored emotionally than those from paragraphs. Without
taking into account the gender information, the probability of cor-
rect classification for the Bayes classifier admits a maximum when
the probability density function of emotional speech features ex-
tracted from the aforementioned utterances is modeled as a mix-
ture of 2 Gaussian densities.

1. INTRODUCTION

Emotion recognition is an area which attracts the interest of the
research community [1]. A wide area of applications such as inter-
face optimization and expressive voice synthesis are related to the
classification of speech into emotional states. The decomposition
of a probability density function (pdf) of multi-dimensional fea-
tures into normal (Gaussian) densities is not a new idea [2]. The
most reliable method for normal decomposition or Gaussian Mix-
ture Modeling is the one invented by N. Day and latter by J. Wolfe
at the late 60’s [3] known as the Expectation-Maximization (EM)
algorithm.

The EM algorithm was used to model the pdf of the emotional
speech prsody features in [4, 5]. However, no special attention was
paid to the estimation of the appropriate number of Gaussian den-
sities in the mixture. In this paper, the Sequential Floating For-
ward Selection method (SFFS) [6] is employed to determine the
best features among a set of 87 global statistical features with re-
spect to the probability of correct classification for the Bayes clas-
sifier when the feature pdfs are modeled as mixtures of Gaussian
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densities. The work presented in this paper expands the already
reported results in [7, 8]. In particular, the Akaike Information
Criterion (AIC) [9] is now used for finding the appropriate number
of Gaussian densities in the pdf of each feature given the emotional
class. Moreover, the number of the crossvalidation repetitions is
controlled through a t-test applied to the probability of correct clas-
sification for the Bayes classifier designed for various feature sets.

The outline of the paper is as follows. In Section 2, the data
extracted from the Danish Emotional Speech (DES) database [10]
are briefly described. In Section 3, feature extraction is presented.
The features are scaled with techniques described in Section 4.
The selection of an optimal set of features by SFFS is described in
Section 5 and the discrimination capability offered by the Bayes
classifier using such a feature set is assessed in Section 6. Finally,
conclusions are drawn in Section 7.

2. DATA

The audio data used in the experiments consist of 1300 utterances,
800 more than those used in the previous works [7, 8], which is a
typical database size. The utterances are manually extracted from
the DES [10]. Each utterance is a speech segment between two si-
lence pauses. The 800 utterances that are now added in dataset are
detached from paragraphs whereas the previously employed 500
utterances were associated to isolated words and sentences. All
utterances are expressed by 4 professional actors (2 males and 2
females) in 5 emotional styles such anger, happiness, sadness, sur-
prise, and neutral style. The extended set provides the necessary
amount of data to train a GMM (Gaussian Mixture Model) with
up to 3 Gaussian densities. An end-point detection algorithm was
used in order to find the start and end of an utterance. Explosive
fricatives, which often arise at the tails of the words, have been
excluded, because they do not reveal any information on the emo-
tional content of speech [11].

3. FEATURE EXTRACTION

The so-called global statistical short-term features [12], i.e., sta-
tistical properties of formant, pitch, and energy contours of the
speech signal are used. The short-term features are estimated on a
frame basis, fs(n;m) = s(n)w(m−n), where s(n) is the speech
signal and w(m− n) is a window of length Nw ending at sample
m. For example, the short-term energy of the speech frame ending
at m is

Es(m) =
1

Nw

m∑

n=m−Nw+1

|fs(n;m)|2. (1)



In order to estimate the pitch, the signal is low filtered at 900Hz
and then “center clipping” is applied to each frame [13]. The pro-
cedure is as follows:

f̂s(n;m) =

{
fs(n;m)− C if |fs(n;m)| > C

0 if |fs(n;m)| < C
∀n (2)

where C is set at the 30% of the maximum value of fs(n;m).
Clipping is a non-linear procedure that prevents the 1st formant
from interfering with pitch. The pitch frequency is estimated by
the short-term autocorrelation

rs(η;m) =
1

Nw

m∑

n=m−Nw+1

f̂s(n;m)f̂s(n− η;m) (3)

where η is the lag. Let us assume that the pitch frequency is limited
in the range [60, 320] Hz. The pitch frequency of the frame ending
at m is given by

Ps(m) =
Fs
Nw

argmaxη{|r(η;m)|}η=Nw (Fh/Fs)

η=Nw (Fl/Fs) (4)

where Fs is the sampling frequency, Fl = 60 Hz, and Fh = 320
Hz.

To estimate the 4 formants, we find the angle of the poles for
the all-pole vocal tract model

Θ̂(z) =
1

1−∑M
i=1 â(i)z−i

(5)

in the z-plane and consider the poles that are further from zero as
indicators of formant frequencies. In (5), â(i) are estimated by the
Levinson-Durbin algorithm [13] and M is the order of the model,
which is usually selected as 10-12 for speech sampled at 8 kHz.

Many global statistical features (e.g., the mean speech energy)
admit a single value throughout the entire utterance. For such
global statistical features, the time information is lost. In order to
cope with this loss, we include also features related to the duration
of the rising and falling slopes of the pitch and energy contours.
After speech framing, we estimate the pitch, the energy, and the
formants of each speech frame, as was previously explained. In
order to create a contour for each feature, we assign the feature
value computed on a frame basis to all samples belonging to the
frame. For example, the energy contour is given by

e(n) = Es(m), n = m−Nw + 1, . . . ,m (6)

where Es(m) is the short term energy of the frame f(n;m). To
determine which samples belong to a set of rising slopes (Sr),
falling slopes (Sf ), plateaux at maxima (Sma), and plateaux at
minima (Smi), we estimate the first derivative of the feature con-
tour by numerical methods. For example, the derivative of the en-
ergy contour can be estimated by the first-order difference eD(n) =
e(n)−e(n−1), n = 2, . . . , L, where L is the signal length. Sub-
sequently, the algorithm of Figure 1 is applied. In this algorithm,
a is a constant that enables the detection of the rising or falling
slopes and the plateaux. The distinction between the plateaux at
maxima and those at minima is accomplished with the constant b
which is set to 0.45. The same set of 87 global statistical features
used in [7, 8] is employed in this paper as well.

if eD(n) ≥ a, s(n) ∈ Sr
else if eD(n) ≤ −a, s(n) ∈ Sf
else if |eD(n)| < a

if s(n) > max(s(i)) · b, s(n) ∈ Sma
else if s(n) ≤ max(s(i)) · b, s(n) ∈ Smi
end

end

Fig. 1. Algorithm for finding the plateaux at minima/maxima and
the rising/falling slopes of pitch and energy contours.

4. DATA PREPROCESSING

The extracted features undergo a preprocessing, because it was
found that a bad scaling can cause overflow or underflow errors
during the estimation of the covariance matrices Σi, endless loops
in the EM algorithm, and it has a biased influence in the visual
representation after dimensionality reduction with Principal Com-
ponent Analysis. The preprocessing consists of two steps, namely
the normalization and the handling of missing data.

Each feature Xk, k = 1, . . . , 87, has its own dynamic range.
Features with variance of order 106 such as the fourth formant,
have greater influence in the classifier design than features with a
variance of order 102 such as the mean value of pitch. Thus, a lin-
ear transformation is applied to each feature. If ak = mini{Xki}
and bk = maxi{Xki} for i = 1, ..., Ns where Ns equals the
total number of utterances, then the linear transformation from
[ak, bk] → [0, 1] is defined as X̂ki = Xki−ak

bk−ak i = 1, . . . , Ns.
Since the pdf of many features Xk is not evenly distributed about
the mean and it has the shape of an exponential distribution, we
avoid the application of the whitening normalization, because the
exponential distribution is not symmetrical and the outliers of the
exponential distribution will be moved further away. The expo-
nentially distributed features may lead to an increased computa-
tional time and underflow warnings, as they become too dense near
the lower bound which in our case is 0+. Accordingly for expo-
nentially distributed features such as those indexed by {1, 14, 22,
31-33, 35, 39-41, 46-48, 55-58, 66-68, 70-73, 78, 79, 81, 85-87}
[7], after the linear transformation, we apply the transformation
ˆ̂
Xk = 1−e−λX̂k

1−e−λ where λ is set to its maximum likelihood estima-

tor 1/E{X̂k}.
There are cases where Xk can not be estimated at utterance i.

For example, some pitch contours do not have a plateaux below the
0.45% of the maximum pitch value. When there is a large number
of missing data, the corresponding feature Xk is discarded. Fea-
tures such as those indexed by {9, 24 − 30, 34, 38, 42, 49, 59 −
65, 69, 77, 84} are discarded, because their missing data ratio varies
between 2% and 70%. In the cases where the missing data are less
than 1% of the whole feature data, the missing data are replaced
with the sample mean. Proceeding so, only 65 among the 87 fea-
tures are retained.

5. SEQUENTIAL FLOATING FORWARD SELECTION
ALGORITHM

In the following, we omit the hats from features for notation sim-
plicity. Let X denote the feature set, i.e., Xk ∈ X . After each for-
ward step, the SFFS algorithm [6] applies a number of backward
steps as long as the resulting subsets are better than the previously



derived ones at this level. Consequently, there are no backward
steps at all when the performance cannot be improved. Starting
form an initial empty set of features Z0, at each inclusion step at
the level l we seek the feature X+ ∈ (X − Zl−1) such that for
Zl = Zl−1 ∪ {X+} the probability of correct classification of the
Bayes classifier J(Zl) is maximized. The inclusion step is fol-
lowed by a conditional exclusion step. We exclude at level l those
Z− ∈ Zl as long as the correct classification of the Bayes classi-
fier for the feature set Zl−1 = Zl − Z−, J(Zl−1), is higher than
J(Zl).

In the following, we describe the Bayes classifier design, the
estimation of probability density functions by Gaussian mixtures,
the estimation of the number of Gaussian densities, and finally the
estimation of the probability of correct classification of the Bayes
classifier by crossvalidation for nrep repetitions.

Let the feature Xk be treated as the kth element of a random
vector x (e.g. a pattern). Let ωi denote the ith class, P (ωi) be the a
priori probability of class ωi, and p(x|ωi) be the class conditional
pdf. The Bayes classifier assigns the pattern x to ωi if

P (ωi) p(x|ωi) > P (ωj) p(x|ωj) j = 1, 2, . . . , c (7)

where c is the total number of classes. In our case, c = 5. Let Li
be the region where x is classified to ωi and L = ∪ci=1Li. We also
define the complement of Li as Lci = L − Li. The probability of
error of the Bayes classifier is given by

ε =
c∑

i=1

P (ωi)

∫

Lci
p(x|ωi) dx. (8)

The pdf p(x|ωi), where x is a d-dimensional pattern can be
modeled by a mixture of Gaussian densities, i.e.

p(x|ωi) = p(x|Θi) =

Nim∑

j=1

πj g(x;µj ,Σj) (9)

g(x;µj ,Σj) =
exp[− 1

2
(x− µj)TΣ−1

j (x− µj)]
(2π)d/2|Σj |1/2

(10)

where the parameter Θi = {πj ,µj ,Σj}Nimj=1 consists of the mix-
ture weight πj , the mean vector µj , and the covariance matrix Σj

of the jth Gaussian component for j = 1, 2, . . . , Nim, andNim is
number of mixtures in the ith class. Θi can be estimated by apply-
ing the EM algorithm [3]. Let {xt}t=NDt=1 be the training samples
we have at our disposal. The EM algorithm finds

Θ∗i = arg max

ND∏

t=1

P (xt|Θi). (11)

The number of Gaussian densities in (9) can be estimated by
applying the Akaike Information Criterion (AIC) [9] or the Mini-
mum Description Length principle which evaluates the parsimony
of the model when Nim components are employed. The AIC is
given by

AICNim = −`(Θ∗i | x) + 2K (12)

where `(Θ∗i | x) is the maximum log-likelihood andK is a penalty
on the complexity that depends on the number of the free parame-
ters, i.e.

K = Nim(1 + d+
d

2
(1 + d)). (13)

An order-recursive procedure can be applied for the optimal esti-
mation of Nim and Θ∗i|Nim . We increase the number of Gaus-
sian densities by 1, we estimate Θ∗i|Nim+1 by applying the EM-
algorithm and we calculate AICNim+1 from (12-13). We stop
increasing the model order if

AICNim+1 −AICNim > 0. (14)

Let
Jnrep(Z) = 1− E{ε(Z, Tr;Dr)} (15)

where ε(Z, Tr;Dr) is the probability of error for the Bayes clas-
sifier that was designed usingDr during the training when it is ap-
plied to Tr and the expectationE{} is applied over the sequence of
error probabilities measured over Tr, r = 1, 2, . . . , nrep. In (15),
the dependence of Jnrep on the feature setZ is made explicit. 90%
of the available utterances are used to build Dr and the remaining
10% creates Tr .

The computation of a fixed large number of crossvalidation
repetitions (e.g. nrep > 30) adds frequently an unnecessary com-
putational burden. A novel method for estimating the best feature
at each forward and backward iteration of the SFFS is proposed
that does not resort to a large number of crossvalidation repetitions.
We assume that the probability of error of the Bayes classifier for
a large number of crossvalidation repetitions follows a normal dis-
tribution. The goal at level l is to find which non-selected feature
X ∈ (X − (Zl−1)) yields the greatest improvement in the prob-
ability of correct classification for the Bayes classifier among the
non-selected features

Jmax = max
X∈(X−Zl−1)

Jnrep(Zl−1 + {X}). (16)

If nrep is a large number, then Jnrep(Zl−1 + {X}) is an accu-
rate estimate of the maximum probability of correct classification
one might expect from the Bayes classifier. But the computation
is time consuming. If nrep is small, Jnrep(Zl−1 + {X}) is com-
puted faster, but it is not accurate. Let us separate the features
X ∈ (X − Zl−1) in potentially expressive features and poten-
tially bad features. The former features yield Jnrep1(Zl−1+X) ≥
J(Zl−1), while the latter ones consistently yield Jnrep2(Zl−1 +
X) < J(Zl−1). We propose to formulate a t-test in order to test
the hypothesis Jnrep2(Zl−1 +X) < J(Zl−1) at 95% significance
level for a small number of iterations (e.g. nrep2=10). If the hy-
pothesis is accepted, we discard the feature X . Otherwise, we
perform more iterations. If the hypothesis Jnrep1(Zl−1 + X) ≥
J(Zl−1) is accepted at 95% significance level for 10 < nrep1 ≤
50, we include the feature under study in the set of 10 best features.

6. RESULTS

Two experiments were conducted using 500 and 1300 utterances.
The set of 500 utterances contains speech segments from isolated
words and sentences. In the following, let us call it set A. Let B
be the set of 1300 utterances that contains speech segments from
words, sentences, and paragraphs. From the inspection of Table 1
we conclude that set A has a stronger emotional valence than the
set B, because the corresponding probability of correct classifica-
tion for the Bayes classifier on set A is 6-10% higher than that of
the Bayes classifier on set B. This implies that the emotional va-
lence of paragraphs is lower than the valence of isolated words and
sentences.



Table 1. Probability of correct classification.
Gender Number of Gaussian densities Human

Set A Set B rates
1 2 1 2 3

Both 0.542 0.562 0.485 0.480 0.464 0.673
Male 0.660 0.625 0.560 0.540 0.503 0.676
Female 0.600 0.540 0.509 0.487 0.485 0.669

A GMM with more than 1 Gaussian densities improves the
probability of correct classification of the Bayes classifier only in
the set A when the male and female utterances are not discrimi-
nated. When the emotional valence is low, as in set B, no gain was
obtained by attempting to train separate emotional speech classi-
fiers for males and females.

If we model all emotional style pdfs by a single Gaussian den-
sity and we build separate emotional speech classifiers for male
utterances and female ones we obtain significant gains in the prob-
ability of the correct classification. That is, a improvement of 12%
was obtained for male utterances and of 6% for females. Attempt-
ing to model the emotional style pdfs with GMMs of 2 Gaussian
densities improvements were still obtained, but they are inferior to
those obtained with a single Gaussian. In Table 2, the best combi-
nation of 10 features for each experiment is indicated. The energy
below 250 Hz (index 1) is present in all combinations. The min-
imum value of the first formant (index 10) is also quite frequent.
The mean value of energy within the rising slopes of the energy
contours (index 78) is found to be also important. The SFFS algo-

Table 2. Best combination of 10 features selected by the Sequen-
tial Floating Forward Selection algorithm in set A.

Classifier Best feature combination
Both genders

1 Gaussian 1, 3, 6, 10, 32, 55, 56, 68, 74, 80
AIC-GMM 2 1, 4, 10, 12, 20, 22, 32, 44, 67, 78

Males only
1 Gaussian 1, 8, 10, 20, 32, 43, 54, 56, 78, 80
AIC-GMM 2 1, 8, 20, 47, 57, 58, 78

Females only
1 Gaussian 1, 4, 16, 21, 22, 39, 54, 67, 74, 78
AIC-GMM 2 1, 20, 43, 78

rithm overrides the local minima during the search of the best com-
bination of features. The comparison with the previously reported
results [7], where the Sequential Forward Selection (SFS) algo-
rithm was employed, reveals that the SFFS algorithm improves
the probability of correct classification of the Bayes classifier by
3% in all the corresponding categories.

7. CONCLUSIONS

We have demonstrated that the SFFS algorithm is more power-
ful for feature selection than the SFS one when emotional speech
Bayes classifiers are built either by taking into account or ignoring
the gender information. We have also proposed and tested a novel
procedure for reducing the computational burden of crossvalida-
tion in SFFS algorithm that applies the t-test on the probability

of correct classification for the Bayes classifier designed for var-
ious feature sets. The highest probability of correct classification
for the Bayes classifier has been obtained working with the set of
utterances from isolated words and sentences when separate emo-
tional speech classifiers were built for male and female utterances
and the speech emotional style pdfs were modeled with a single
Gaussian density.
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