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ABSTRACT

A novel extension of the classical signal-adaptive median filter
(SAM ) is proposed in this paper, namely the morphological signal-
adaptive median filter (MSAM ). Three modifications are intro-
duced in the SAM filter aiming at: (1) enhancing the SAM im-
pulse detection mechanism so that it also detects randomly-valued
impulses, (2) employing an anisotropic window adaptation based
on binary morphological erosions/dilations with predefined struc-
turing sets and (3) extending its design for its application to image
sequences as well. Its performance has been tested for noise sup-
pression in both still images and image sequences. Its robustness
against a wide variety of noise distributions as well as its supe-
riority to the classical SAM filter are proved judging from both
objective (SNR,MAE) and subjective (perceived image quality)
criteria.

1. INTRODUCTION

A frequently encountered problem in image processing is the cor-
ruption of images or image sequences by a variety of noise dis-
tributions dependent on the prevalent conditions. The observed
noise can be modeled either as additive white, impulsive, signal-
dependent or a combination of them [1]. Therefore, the need emer-
ges for implementing smoothing techniques that are able to treat
different kinds of noise. Furthermore, a noise-free version of the
corrupted image or sequence required by adaptive filtering algo-
rithms during the training procedure is not always available. More-
over, it is well known that the main objectives of image filtering
algorithms are: (a) the suppression of noise in homogeneous re-
gions, (b) the preservation of edges (spatial or temporal) and (c)
the removal of impulses (of constant and/or random value). A class
of filters that fulfills these requirements is the so called signal-
adaptive filters. Signal-adaptive median (SAM ) is a paradigm of
this class [1].

A novel extension of the classical SAM filter [1] is proposed
in this paper, namely the morphological signal-adaptive median
filter (MSAM ). This filter performs well on many kinds of noise.
It does not require a priori knowledge of a noise-free image or
frame, but only of certain noise characteristics, which can be easily
estimated. It adapts its behaviour based on a local SNR measure
achieving thus edge preservation and noise smoothing in homoge-
neous regions. It smooths impulsive noise as well.

2. MORPHOLOGICAL SIGNAL ADAPTIVE MEDIAN
FILTER STRUCTURE

To begin with, let us describe the framework for signal-adaptive
filters. Let ��n denote the noise variance that is known or has been
estimated beforehand. Moreover, in the case of impulsive noise let
pp be the percentage of positive impulses (i.e., Smax � ���), and
pn be the percentage of negative impulses (i.e., Smin � �). Thus,
the noisy image pixel values x�k� l� are determined by the model:

x�k� l� �

�
Smin with prob. pn
Smax with prob. pp
x�k� l� with prob. �� �pp � pn�

(1)

where x�k� l� is an image pixel possibly corrupted by additive
white or signal-dependent noise. An image can be considered as a
sum of two components:

x�k� l� � xL�k� l� � xH�k� l� (2)

i.e., a low-frequency component xL�k� l�which is dominant in ho-
mogeneous regions, and a high frequency one xH�k� l� observed
in edges. The output of the MSAM filter is expressed as in the
SAM filter, i.e.

y�k� l� � 	xM �k� l� � b�k� l�
x�k� l�� 	xM �k� l�� (3)

	xM �k� l� is the modified median, i.e., the median of the pixels
that remain after the removal of impulses from the local window.
b�k� l� is a weighting coefficient that is used to adapt the window
size according to whether a flat region or an edge has been met. It
is evident that total noise suppression is achieved in homogeneous
regions, because a large window is employed due to b�k� l� being
close to 0. Edges are also preserved well, because a small win-
dow size is used due to b�k� l� being close to 1 in this case. The
window increment/decrement procedure is explained below. Two
major modifications are introduced in the MSAM filter structure
compared to the SAM filter [1]:

(1) MSAM employs binary dilations and erosions with cer-
tain predefined structuring elements (SEs) in order to vary
the window size anisotropically with respect to the local
image content.

(2) MSAM employs two impulse detectors: one for constant
impulses (either positive or negative) and another for rando-
mly-valued impulses. Impulse detection is done only in the
initial window of dimensions �� �.



Subsequently, the several steps of the algorithm are presented.

1.Constant value impulse detection [1]:
The filter performs detection of constant value impulses in an ini-
tial window of dimensions ��� by using a signal-dependent thresh-
old for negative impulses, �n�k� l�, and another one for positive
impulses, �p�k� l�,:

�n�k� l� � c
Smin � 	xM �k� l�� � � (4)

�p�k� l� � c
Smax � 	xM �k� l�� � � (5)

where c is a constant equal to ��
. If 
x�k� l� � 	xM �k� l�� �
�n then x�k� l� is detected as a negative impulse. Similarly, if

x�k� l� � 	xM �k� l�� � �p then x�k� l� is detected as a positive
impulse.

2.Randomly-valued impulse detection:
Motivated by the randomly-valued impulse detection mechanisms
developed in [3, 2], two additional thresholds are introduced in the
SAM filter, defined by:

h��k� l� � xmax � xmin� (6)

h��k� l� � xmax� � xmin (7)

xmin is the minimum value pixel, xmin� is the second minimum
value pixel, xmax is the maximum value pixel and xmax� is the
second maximum value pixel in the initial window. If jx�k� l� �
	xM �k� l�j is greater than any of h� or h�, then x�k� l� is of very
small or of very large value with respect to its neighbouring pixels
and most possibly a randomly-valued impulse. If the current pixel
is an impulse, either constant or randomly-valued, it is excluded
from the estimation of the median at the current and at any future
window centered at �k� l� yielding the modified median.

3.Calculation of the weighting coefficient b�k� l�.
This coefficient is given by the expression [1]:

b�k� l� �

�
�� if ���n � ���x

��� ��
�

n

���x
��� otherwise.

(8)

���x denotes the image variance estimated from the local “window-
ed” histogram by excluding the current pixel if it is detected as an
impulse [1]. � and 	 are appropriately chosen parameters in the
interval 
�� ��. The parameter � controls the threshold on the lo-
cal SNR up to which the high-frequency components are entirely
suppressed. The parameter 	 controls the suppression of noise
close to edges.

4.Decision whether the current pixel belongs to a homogeneous
region or to an edge.
The weighting factor b�k� l� is compared to a predefined thresh-
old bt. If it is smaller than bt, then the current pixel is assumed
to belong to a homogeneous region. Otherwise, the current pixel
belongs to an edge. The threshold bt lies in the interval 
�� ��.
Its selection is accomplished in accordance with the degree of cor-
ruption and the nature of noise. For highly corrupted images, its
value is lower than 0.5. If the image is corrupted by pure Gaussian
noise of relatively medium variance, the threshold lies in the range

�

�� �
���. A reliable method for the choice of the threshold bt
is described in [1].

5.Novel window adaptation procedure. The proposed MSAM
differs from the SAM filter in the window adaptation procedure

used. SAM employs isotropic filter windows of dimensions � �
� up to �� � ��. In contrast to SAM , an anisotropic window
adaptation procedure is proposed based on mathematical morphol-
ogy erosions/ dilations with predefined structuring elements. Four
structuring elements are employed, namely, B�, B�, B� and B�

and their symmetric ones Bs
� , B

s
� , B

s
� and Bs

� illustrated in Fig.
1a. They are divided in even-angle SEs (B�, B�, Bs

� , B
s
�) and

in odd-angle SEs (B�, B�, Bs
� , B

s
�). The window increment is

performed by a dilation operation W � Bi, where W denotes the
current filter window. The “direction” of increment depends on the
choice of Bi. The result of the window growing W � Bi for an
original � � � window size W is shown in Fig. 1b. The thin dots
belong to the original window W while the bold dots denote the
new pixels that have been appended to W forming thus the new
(larger) window. In an analogous fashion, the window decrement
is performed by an erosion operation W � Bi. This is demon-
strated in Fig. 1c for B�, Bs

� , B�, Bs
� . The procedure of the

window adaptation begins with a �� � square window and checks
whether the central pixel belongs to an edge.

I. If it does not belong to an edge:

(a) An attempt is made to increase the window size by using
the odd-angle SEs.
(i) If an edge is “hit” (e.g. b�k� l� � bt) any odd-angle SE
employed is excluded and the even-angle SEs that compose
it are tested for possible window increment. For example, if
B� is excluded, B� and B� are tested for possible window
increment. This means that the sides of the mask are also
separately checked expecting that an edge is possibly met
at one side only. By doing so, maximal window increment
is achieved.
(ii) If an edge is not met, then the odd-angle SE is used to
increase the window size. The corresponding even-angle
SEs are then excluded.

(b) In the next step, the odd-angle SEs, that have not been ex-
cluded in a previous step, are tested again. In the above-
described example, B�, Bs

� and Bs
� remain to be tested. In

other words, if it is known from a previous step that a win-
dow side meets an edge, this side is not considered again.

(c) The procedure continues until all the odd-angle and all the
even-angle SEs are excluded or until at least one side reaches
a maximal size (e.g., 11).

II. If the pixel belongs to an edge, the goal is to expand the mask
in the neighbouring regions that are homogeneous. That is, the
current pixel is labeled as a border pixel and the window incre-
ment is done towards the side of the edge where the pixel belongs
to. To do so, the opposite side of the edge must be found and the
increment of the filter window towards that direction must be pro-
hibited. This is done as follows. The average value of the pixels on
each of the four sides of a window of dimensions �� � is derived
and the absolute difference between these average values and the
current pixel is calculated. The side that corresponds to the greater
difference is removed. The difference is a measure of deviation
of the side pixels from the current one. The side that deviates the
most is possibly the side that should be removed. The decrement
of the initial window size is achieved by the operation of erosion
with one of the SEs B�, Bs

� , B�, Bs
� only. Subsequently, the win-

dow increases towards the remaining sides in the way described
above by using appropriate SEs. For example, if erosion with B�

were performed, B�, B�, Bs
� , B�, Bs

� would be used to increase



further the window.
Finally, if the current pixel is detected as an impulse, the factor
b�k� l� is set to 0 (thus allowing maximum filtering).

qq

qq

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

qq

q q

q

q

q

q

q

q

q

q q

q

q

q

q q

q q

W � B� W �Bs
�

W � B� W �Bs
�

W � B� W �Bs
�

W �Bs
�W � B�

W � B�

B�

B�

B�

B�

W � B� W �Bs
�

(a)

W �Bs
�

(b)

(c)

Bs
�

Bs
�

Bs
�

Bs
�

q

q

q q

q q

q

q

q

q

q

r r r

q q

q

q

qq

qq

q

r r r

r

r

r

r

q

q

r

rq

qq q

q

q q q

qq

qq r

qq

q

q q

r

q q

qq q

r

r

q

q

qq

qq

q

qr

r

r r r r

qq

q

q q

q

q

q

q

rrr r

r

r

r

r

qq

q qq

r q

q

rrr

q

q q

r

q

qq

q qq

q

r

r r r r

q

q

Figure 1: (a) Structuring Sets. (b) Window Increment using Dila-
tion. (c) Window Decrement using Erosion.

3. SIMULATION RESULTS

The noise corruption process of [4] is adopted. White i.i.d. noise
obeying the pdf of a Gaussian mixture given by:

n � ��� ��N��� ��� � �N���
��
�
� (9)

is added to the noise-free test images. Its mean valueE�n� is close
to 0 while its variance is given by:

��n � ������ �� ���� (10)

The contamination factor �, along with the initial standard devi-
ation �� , determine the degree of corruption. The result of this
noise corruption process is a mixture of Gaussian and impulsive
noise of varying characteristics. The special case of constant im-
pulsive noise corruption is additionally examined in order to test
the robustness of the proposed filter against this kind of noise.

Performance conclusions are drawn based onSNR andMAE
values, as well as on the achieved visual quality of the filtered test
images.

3.1. Still Image Filtering

The noise-free image “Airfield” has been used as test image in the
still image filtering case. Part of the original image is shown in
Fig. 2a. Three cases are examined. First, “Airfield” is corrupted
by the contaminated noise of (9) using � � �
� and ��� � ��

�,
which leads to severe corruption by both impulsive and Gaussian
noise (Fig. 2b). Secondly, � is set equal to 1.0 which implies that
only Gaussian noise is present in the noisy image. A value close

(a) (b)

(c) (d)

Figure 2: (a) Part of the noise-free image: Airfield. Same part (b)
corrupted by contaminated noise, (c) processed by MSAM and
(d) processed by SAM .

to 474.0 has been used for ��� . Finally, impulsive noise of 10%
positive and 10% negative constant impulses has been added to
“Airfield”. The simulation results for the three cases are listed in
Table 1. For comparison purposes, results obtained by using the
SAM and the median filter of dimensions �� � are also included
in Table 1. Fig. 2c shows the output of the MSAM filter cor-

Table 1: Simulation Results: Still image case.

Filter Contaminated Gaussian Impulsive
SNR MAE SNR MAE SNR MAE

Noisy 3.03 26.47 9.01 16.83 -0.03 23.04
MSAM 11.72 11.00 12.80 10.18 14.47 4.60
SAM 9.27 13.16 12.46 10.76 13.41 3.08
Median 11.18 12.27 12.38 10.65 12.58 7.69

responding to the image part examined. The output of the SAM
filter is shown in Fig. 2d. The inspection of Table 1 manifests that
theMSAM filter outperforms the SAM and the median filters in
all cases. This is also verified by comparing Fig. 2c and 2d. Bet-
ter impulse removal, edge preservation, edge noise filtering and
Gaussian noise smoothing in flat regions are achieved.

3.2. Image Sequence Filtering

The “Mobile” image sequence has been used in the image se-
quence filtering experiments. Motivated by the success of motion-
compensated (MC) filtering [5], motion compensation performed
by block matching has been used to estimate the motion trajec-
tory among the frames in the spatiotemporal filter window. Frame
4 was used as current frame, part of which is shown in Fig. 3a,
Frame 0 as previous and Frame 8 as next.

Extension of theMSAM filter structure to an MC-spatiotem-
poral counterpart involves the determination of the filter’s spa-



(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Part of the noise-free Frame 4 of Mobile sequence.
Same part (b) corrupted by contaminated noise, and processed by
(b) MC MSAM and (d) MC SAM . Edge detection achieved by:
(e) MC MSAM and (f) MC SAM .

tiotemporal window. This is composed by asymmetric spatial win-
dows of variable dimensions defined with reference to the pixels
on the motion trajectory. The spatial windows are adapted sepa-
rately in each frame in the same way as the spatial MSAM filter
does.

The same noise cases are examined here as well. Frames 0-
4-8 are corrupted by contaminated noise (9) using � � �
� and
��� � ���
� (part of the corrupted Frame 4 is shown in Fig. 3b),
Gaussian noise using � � �
� and ��� � ���
� and constant
impulsive noise with 7.5% positive and 7.5% negative impulses.
The performance of the MC-spatiotemporalMSAM filter is com-
pared to the MC spatiotemporalSAM filter (the structure of which
is extended in a similar way to the MSAM filter with the excep-
tion that symmetric spatial windows are used) and median filter of
dimensions �� �� �. The simulation results are listed in Table 2,
which shows that the MCMSAM filter outperforms the other two
in all cases. This is also proved by judging from the visual quality
of the processed Frame by the MC MSAM and the MC SAM
filters (Figs. 3c and 3d respectively). Figs. 3e and 3f illustrate the
value of b�k� l� at each pixel appropriately scaled. A value close

Table 2: Simulation Results: Image Sequence case.

Filter Contaminated Gaussian Impulsive
SNR MAE SNR MAE SNR MAE

Noisy 4.97 14.04 8.68 11.95 -1.89 17.82
MSAM 11.17 7.27 13.36 6.20 15.74 2.31
SAM 10.16 7.67 13.15 6.33 15.37 1.61
Median 10.03 8.42 10.00 8.75 10.10 7.20

to 1.0 indicates edge region while a value close to 0.0 a flat region.
It is seen that the SAM edge detection produces thicker edges
which implies less filtering in those areas. Furthermore, pixels in
flat regions are seen to be mistakenly assigned as edge pixels by
the SAM filter due to its reduced impulse detection capabilities.
Thus, the MC MSAM filter achieves better impulse removal and
noise smoothing.

4. CONCLUSIONS

The performance of the MSAM filter proves to be very satisfac-
tory in both still images and image sequences. Especially at high
corruption levels, its performance significantly surpasses that of
the other filters under study. This is attributed to three factors: (i)
the use of large window sizes at flat regions, (ii) the anisotropic
window adaptation that allows a higher noise suppression close to
edges, either spatial or temporal, and (iii) the improved impulse
detection mechanism. Such good performance is obtained with-
out any reference image or training process and in a single pass.
Furthermore, the poor performance of median filters in presence
of Gaussian noise is diminished. Moreover, the MSAM filter
achieves a noticeable improvement in the visual perception of the
filtered images/frames. Edges are preserved at a high extent, while
noise is better suppressed in flat regions and impulses are more
efficiently removed.

However, a minor disadvantage is its inability to preserve very
small details and thin lines. Furthermore, the anisotropic window
adaptation process requires more computational effort due to ero-
sion and dilation computations.
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