Comparative study of speaker verification techniques

based on vector quantization, sphericity models and

dynamic time warping*

Sofia Tsekeridou!

Abstract — Three simple speaker verification tech-
niques based on vector quantization, sphericity mod-
els and dynamic time warping, respectively, are de-
veloped and tested using the same experimental pro-
tocol. Two types of feature vectors, the linear pre-
diction derived cepstral coefficients and the mel-
frequency cepstral coefficients are considered. The
efficiency of the combination of the type of acoustic
analysis and the verification technique is quantita-
tively measured through the achieved equal error
rate.

1 Introduction

Three simple speaker verification techniques are
developed and tested using the same experimen-
tal protocol. The first two methods are text-
independent ones. They are based on vector quan-
tization (VQ) [2, 3] and sphericity-based models
[4]. Text-independent verification is often pre-
ferred over a text-dependent one, because it max-
imizes user comfort [5]. The third method is
text-dependent and employs dynamic time warp-
ing (DTW) [6]. The chosen methods do not re-
quire large training databases in order to build
the reference models needed to parameterize the
speech or the speakers. This is not the case with
other speaker verification techniques, such as Hid-
den Markov Models (HMMs) and Gaussian Mix-
ture Models (GMMs). Moreover, they have limited
storage requirements. Indeed, VQ and sphericity-
based models possess much less storage require-
ments than DTW, HMMs and GMMs. The stor-
age requirements of HMMs depend on the num-
ber of states used to model each word, the num-
ber of components in the Gaussian mixture describ-
ing each state, and the type of the covariance ma-
trix (i.e., full or diagonal) employed in the mul-
tivariate Gaussian probability density function of
each component. It can be shown that DTW has
less storage requirements than HMMs when many
states per word and full covariance matrices are em-
ployed in the latter. In this work a fixed-vocabulary
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speaker verification application (i.e., a vocabulary
composed of digits 0-9 in French) is explored. Two
types of acoustic signal analysis are investigated,
namely the linear prediction (LP) derived cepstral
coefficients (LPCCs) and the mel-frequency cep-
stral coefficients (MFCCs).

The major contribution of the paper is in the
comparative study of the efficiency of the combina-
tion of the acoustic signal analysis performed and
the speaker verification algorithm employed. The
efficiency of the combination of the type of acoustic
analysis performed and the verification technique
employed is quantitatively measured through the
achieved equal error rate (EER) using the same ex-
perimental protocol on the M2VTS database. This
database has been selected instead of other speech
databases (e.g., TIMIT, Polycost or OGI) so that
the verification rates reported here can be subse-
quently fused with those obtained using frontal face
images toward a multi-modal access control system,
as in [7]. The same database has also been used in
[7, 8]. There, experimental results have primarily
been reported for audio-based speaker authentica-
tion using HMMs. However, the reported rates re-
fer only to LPCCs and to one of the experiments
described in this paper. The same remarks apply
to the rates reported for sphericity-based speaker
verification in [9].

A second contribution is the use of Learning Vec-
tor Quantizer! as a speaker verification method
based on VQ. The advantage of the method is
that it allows the parallel generation of speaker-
dependent codebooks. Furthermore being a super-
vised clustering algorithm, it penalizes wrong clas-
sifications of feature vectors to speaker-dependent
classes maximizing thus the inter-speaker separa-
tion. Intra-speaker variability is taken into account
by employing Mahalanobis distance measures. An-
other extension of the basic algorithm is the use of
segment-based distances in both the training and
the recall phase. That is, the distances are mea-
sured on groups of successive feature vectors that
belong to the same speech unit (e.g., digit in our
case).

1LVQ3 according to the terminology used in [10].



2 Audio Preprocessing and Feature Vector
Extraction

To discard the silent parts from the utterance an
endpoint detection algorithm that uses short-term
measures of energy and zero-crossing rate is em-
ployed [11]. Subsequently, the speech frames are
pre-emphasized. Preemphasis is performed by fil-
tering a speech frame with an FIR filter having
transfer function H(z) = 1 — 0.9527! in order to
increase the relative energy of its high-frequency
spectrum.

Two types of feature vectors parameterize the
speech frames that have been uttered by each
speaker: (a) LPCCs, and (b) MFCCs. In order to
evaluate the LPCCs of a speech frame, linear pre-
diction analysis of order p is performed using the
autocorrelation method [3, 11]. The LPCCs have
undergone liftering to increase their robustness, as
is proposed in [1]. We have used frames of duration
30 ms with an overlap of 20 ms between successive
frames and a model order p = 12. In contrast to [9]
the log signal energy is not included in the feature
vector. Moreover, delta and delta-delta coefficients
are not considered. MFCCs are of the most popular
feature vectors derived from the acoustic analysis
[12]. Their computation was done according to the
procedure described in [3, 11] for a decomposition
of the Nyquist bandwidth into L = 40 triangular
filters.

3 Verification based on variants of Learning
Vector Quantizer

Speaker-dependent codebooks are generated in par-
allel for each authorized user (i.e., client) of the
system. Each speaker-dependent codebook is com-
prised of an arbitrarily chosen number of codevec-
tors (e.g., 32). The number of codevectors is usu-
ally chosen so that it approximates the number
of phones in the language. Although French has
41 phones, to a first degree of approximation, we
model the French consonants with 20 codevectors
(i.e., 12 for obstruents and 8 for sonorants) and the
French vowels with 12 codevectors by omitting the
distinction between oral and nasal vowels [13, pp.
705-706].

Let Ny, be the total number of training speakers.
Speaker dependent-codevectors are initialized by
the LBG algorithm applied to the feature vectors.
Each speaker is modeled by its covariance matrix
I'; and its codebook M;, i = 1,2,...,Ng,. I is
estimated from the feature vectors of the speaker’s
training utterance. During the training procedure,
a feature vector c is quantized by the kth codevec-
tor myp, kK = 1,2,...,32, of the speaker codebook

M;, it
(1)

(k) =arg min d(mj,c)

1=1,2,...,32

where

d(myi, ¢) = (my — ¢)'T7 (my —c¢).  (2)
The update of codevectors m;; is done as in LVQ3
[10].

Having modeled each speaker by a codebook M,
i=1,2,..., Ny, and a covariance matrix I';, dur-
ing pattern matching, a test feature vector c; is
quantized by the codevector m;; that yields the
minimal Mahalanobis distance (2). A score func-
tion §(m;, c;) = d(m;g, c¢) is then computed. The
average distortion from the entire speaker utterance

1 T
Di = T Z(5(mi,ct)

t=1

3)

where T is the total number of feature vectors ex-
tracted from the speaker’s utterance is used as a
global matching score.

Another extension of the LVQ3 algorithm has
been considered. Usually, speech segments are cho-
sen so that they correspond to speech units (i.e.,
digits in our case). Let us suppose that the total
number of speech segments in the speaker’s utter-
ance is N,e4. Instead of updating the speaker code-
books for each training feature vector separately,
the updating can be performed for the group of
feature vectors ¢;, I = 1,2,..., N, , that belong to
the rth segment, r = 1,2,..., Ns4, based on the
minimization of segment-based distances

RS
N, Zé(mi,cl)
(4)

where N, is the total number of consecutive fea-
ture vectors in the rth segment. During pattern
matching, the average distortion D, is estimated
by

S(m;, {c;, [=1,2...,N, }) =

~

—

N,

> d(my, {e, I1=1,...,N.,}). (5)
r=1

1
Nseg

D; =

4 Verification using sphericity-based mod-
els

Each client is modeled by the covariance matrix
T'x of the feature vectors of the client’s training
utterances. Similarly, a test person is modeled by
the covariance matrix I'y of the feature vectors



of its utterance. The similarity measure between
the client and the test person is the arithmetic-
harmonic sphericity measure Dgpy (T'x, T'y) given
by [4]:

tr(C T ) tr(D AT
Dspi(Tx. Ty) = log T XC)IQ( xTv)

(6)

where ¢ is the feature vector dimensionality. In our
analysis, ¢ = p = 12.

5 Verification based on Dynamic Time
Warping

In DTW, a speaker-dependent template model is
created for each digit. The template model is com-
prised of the parameterized speech frames that cor-
respond to the digit under study (cq(X),c2(X),
...,cN(X)). The parameterized speech frames of
a test person that utters the same digit form a se-
quence (c1(Y),ca(Y), ..., cp(Y)). The latter se-
quence is aligned through a dynamic programming
procedure by which temporal regions of the test
person utterance are matched with appropriate re-
gions of the template model [11]. A match score is
derived per digit, i.e.,

M

Dprw(X,Y) = Z d(ci(Y), cj)(X))
i=1

(7)

where j(i) is the index of the reference feature
vector that matches best the test feature vec-
tor indexed by i. All match scores are then
summed to yield a global distance measure. In
(7), d(ci(Y), c;(;y (X)) can be a Euclidean distance,
since the feature vectors consist of cepstral coeffi-
cients.

6 Performance evaluation and discussion

The proposed speaker verification algorithm has
been tested on the M2VTS database [14]. Five
recordings of the 37 persons have been collected.
Let BP, BS, CC, ..., XM be the identity codes
of the persons in the database. Four experimental
sessions have been implemented using a combina-
tion of the “leave-one-out” principle and rotation
estimates with the first four recordings.

First let us describe the training procedure when
the utterance of person BP from the fourth record-
ing is left out so that BP is used as test impostor,
and similarly the utterances of the remaining 36
persons (BS,CC,..., XM) from the same record-
ing are also excluded so that these utterances are
used to form test client claims. Accordingly the
training set is built of the three recordings of ut-
terances of the 36 clients, BS,CC,..., XM. Six

permutations of the three recordings taken two at a
time can be made. In each permutation, the param-
eterized speech frames of utterances from the first
recording are used to build the speaker-dependent
models for all clients. Using the client models and
the utterances from the second recording one may
compute: (i) 1 distance measure between the model
and utterance of each client, and, (ii) 35 distance
measures between the model of each client and the
utterance of any different speaker. To illustrate the
derivation of thresholds, let us consider what hap-
pens when person BP pretends to be person BS
using his utterance from the fourth recording. Let
D) (BS, (BP,4)) denote the Ith order statistic in
the set of 35 distance measures between a model
of BS and utterances of CC,..., XM that consti-
tute the training impostor claims for BS using the
training set, as is described previously. A threshold
for person BS can by chosen as:
Tps(BP,4) = Dy (BS,(BP,4)), 1=1,2
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A test procedure is then defined where the first
three recordings create the training set while the
fourth one is used as a test set. Each person of the
test set is considered in turn as an impostor while
the 36 others are used as clients. Each client tries
to access under its own identity while the impos-
tor tries to access under the identity of each of the
36 clients in turn. The speaker-dependent models
and thresholds derived during the training proce-
dure are exploited. Since the training procedure
delivers three speaker-dependent models, we com-
pute the minimum distance measure between the
test utterance and the speaker-dependent models.
The minimum distance is then compared against
the threshold given by (8). By rotating between
the four recordings, 5328 client and additional 5328
impostor claims can be produced. For a partic-
ular choice of parameter [, a collection of thresh-
olds is determined that defines an operating state
of the test procedure. For such an operating state,
a false acceptance rate (FAR) and a false rejection
rate (FRR) can be computed. We may create a
plot of the FRR versus the FAR with the scalar
o as a varying parameter, the so-called Receiver
Operating Characteristic (ROC) of the verification
technique. Although the ROC curves have been de-
rived due to lack of space they are not included in
the paper. To assess better the performance of the
verification algorithms, we use the fifth recording
as a testbed and the first three recordings to train
each verification algorithm, as in [8]. The Equal Er-
ror Rates (EER) achieved in all cases are tabulated
in Table 1. Note that DTW yields a first operat-
ing point at FAR=1.53% and FRR=0.65% when



Table 1: Achieved EER values (%).

Classifier LPCC MFCC
Entire| Shot 5 | Entire | Shot 5

LVQ3 7.98 6.35 4.52 4.39

LVQ3 on | 7.23 6.97 4.36 3.68

segments

Sphericity | 2.70 2.48 1.60 1.47

models

DTW [0.657 2.7 4.18 5.4
1.53]

LPCCs are employed. Therefore, an ERR cannot
be estimated in this case. It is seen that MFCC
feature vectors yield better results than LPCC fea-
ture vectors for text-independent speaker verifica-
tion. On the contrary, LPCC feature vectors out-
perform MFCC feature vectors in the case of DTW
(i.e., text-dependent speaker verification). This is
in par to the observation that LPCC coefficients
outperform MFCC coefficients for simple Hidden
Markov Model (HMM) topologies [1]. For the text-
independent speaker verification algorithms tested,
a drop in EER is found when the fifth recording
is processed. In the case of DTW, a larger EER
is measured when the fifth recording is used for
testing. This fact is attributed to the not optimal
segmentation of the speech signal into digits. The
use of training digit models, training silence mod-
els and HMMs to segment the speech signal into
digits would solve the problem. A slightly better
performance is obtained when segment-based dis-
tances are used in the variant of LVQ3 classifier
both for LPCC and MFCC feature vectors. For
comparison purposes we refer that HMMs using a
parameterization of speech frames with LPCCs of
order 12 including the log-energy coefficient, delta
and delta-delta coefficient have given FAR=2.3%
and FRR=2.8 % [8] when the fifth recording is used
for test purposes. It can be seen that a similar per-
formance level has been obtained by the sphericity-
based models and DTW with LPCCs and a bet-
ter performance has been obtained with sphericity-
based models with MFCCs. The performance of
LVQ3 on segments and MFCC parameterization is
not far behind.
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