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Abstract—In this paper we investigate the potential benefits
of combining, within a classification task, a discriminant linear
subspace feature extraction technique, namely Discriminant Non-
negative Matrix Factorization (Discriminant NMF or DNMF),
with a Support Vector Machine (SVM) classifier. The aim was to
investigate whether this combination provides better classification
results compared to a template matching method operating on
the DNMF space or on the raw data and an SVM classifier
operating on the raw data, when applied on the frontal facialpose
recognition problem. The latter is a two-class problem (frontal
and non-frontal facial images). DNMF is based on a supervised
training procedure and works by imposing additional criter ia
on the NMF objective function that aim at increasing class
seperability in the lower dimensionality space. Results onface
images extracted from the XM2VTS dataset show that feeding
the DNMF subspace data into the SVM is the approach that
provides the best results.

I. I NTRODUCTION

Over the past decades, a lot of research has been carried out
on human face related computer vision and machine learning
tasks, such as face detection and tracking, facial features
detection, face recognition and facial expression recognition.
While face detection systems that work for various, non-frontal
face poses have been developed [1], face recognition and facial
expression recognition techniques have been designed to work
on frontal or nearly frontal face images [2], [3]. Thus, an
issue that arises in practical situations is that a face or facial
expression classifier trained with frontal face images willnot
be able to meaningfully operate in non-frontal face images.
Therefore, the problem of frontal face pose recognition needs
to be solved, so that frontal face images can be detected
and used as input in face recognition or facial expression
recognition systems.

Head pose estimation techniques [4], where the orientation
of the human head is estimated by determining the value of the
yaw, roll and pitch angles, can be used to determine if a facial
image is suitable for use by a frontal face or facial expression
recognition system. In this paper, however, we view the
frontal face pose recogntion problem in a simplified a 2-class
framework. Rather than determining the head pose angles,

we simply consider an image of a face to be either frontal
or non-frontal. Four different appearance based approaches
are investigated for this task. The first approach is a simple
template matching approach. The second approach involves
feeding the raw image data (intensity) to a Support Vector
Machine (SVM). The third approach uses Discriminant Non-
negative Matrix Factorization (Discriminant NMF or DNMF)
to reduce the dimensionality of the data and subsequently in-
volves template matching. The final approach uses the DNMF
transformed data along with an SVM. Our goal is to verify
our expectation that combining DNMF with an SVM provides
the best overall performance.

The paper is organized as follows: Section II briefly de-
scribes the DNMF algorithm, Section III goes over the princi-
ples of the SVM classifier, while section IV briefly describes
template matching. Experimental data are presented in section
V and section VI concludes the paper.

II. D ISCRIMINANT NON-NEGATIVE MATRIX

FACTORIZATION

Discriminant Non-negative Matrix Factorization, as its name
implies, is an attempt to incorporate discriminant information
into the NMF algorithm. NMF decomposes a set of input
vectors into a set of basis vectors and a set of coefficient
vectors. When the dimensionality of the coefficients’ spaceis
smaller than the dimensionallity of the original vectors’ space,
NMF becomes a subspace technique that can be used as a
preprocessor to data that will be used in a classifier.

Whereas NMF optimizes a data reconstruction criterion,
DNMF allows for greater reconstruction errors, in order to
make the classes more easily separable [5].

Suppose that the data set matrixX = [x1,x2 . . .xn], where
xi is an individual data column vector is to be written in the
form of:

X = BH

whereB = [b1,b2, . . . ,bd] is a matrix containing the basis
vectors bi in column format, d is the dimension of the



projection space andH = [h1,h2, . . . ,hD]T is a matrix
containing the coefficient vectors,D being the dimension of
the original data space.

In order to estimate the quality of this factorization, NMF
uses the Kullback-Leibler divergence

DKL(x||y) =
∑

i

(xi log
xi

yi

+ yi − xi)

to evaluate how different the reconstructed data (BH) are from
the original data (X). Thus, the goal of the NMF algorithm is
to minimize

DKL(X||BH) (1)

with respect toB and H. This is done through an iterative
process that estimates the basis and coefficient vectors inB

andH. More details can be found in [6].
In order to improve the separability of the projected data,

it is reasonable to require that the centers of each class (as
defined by the class mean) in the projected space are further
apart, while all the data of the same class are more closely
clustered together. Similar to the Linear Discriminant Analysis
(LDA) [7], DNMF accomplishes this by taking into account
the between class scatter matrix (Sb) and the within class
scatter matrix (Sw).

In a data setX of C classes, withNc samplesx(c)
i for each

class, the between class scatter matrix is given by:

Sb =

C
∑

c=1

Nc(x̂
(c) − x̂)(x̂(c) − x̂)T

where x̂(c) is the mean of classc and x̂ is the mean of the
entire data set. The trace of this matrix provides an estimate on
how far apart the classes are. The within class scatter matrix
for classc is given by:

S(c)
w =

Nc
∑

i=1

(x
(c)
i − x̂(c))(x

(c)
i − x̂(c))T

while the overall scatter matrix isSw =
∑C

c=1 S
(c)
w . The trace

of this matrix provides an estimate on how far apart the data
within each class are. DNMF enriches the objective function
of the NMF method by including the traces of these matrices
in (1), forming the new objective function:

DKL(X||BH) − κ1 ∗ tr(Sb) + κ2 ∗ tr(Sw) (2)

The estimation ofB andH is again performed by an iterative
optimization process using a random initialization. Once the
basis vectors inB have been estimated using a set of training
data, a test vectort can be projected to the DNMF space by
multiplying with B from the right:

td = tB

III. SUPPORTVECTORMACHINES

Support Vector Machines [8] originated from the attempt to
optimally separate two classes,C1 and C2, that are linearly
separable with a single hyperplane. A hyperplane is defined by
the equation< w,x > +b = 0, wherew is the hyperplane’s
normal vector and<, > denotes the dot product between two
vectors.

When two classesC1 and C2 are linearly separable, then
we can find a normalw and a constantb, so that< w,x >

+b ≥ 1, if x ∈ C1 and< w,x > +b ≤ −1, if x ∈ C2. For the
points ofC1 that satisfy the equality< w,x > +b = 1, it is
easy to see that their distance from the separating hyperplane
is 1

||w|| (likewise for the points ofC2). The sum of the
minimum distances( 2

||w||) from the points of each category
to the separating hyperplane is called a margin. A reasonable
assumption for a hyperplane that optimally separates the two
classes is that maximizes the margin.

In order to find the optimal separating hyperplane, we need
to minimize ||w||, or equivalently1

2 ||w||2. Since we also like
the separation (classification) to be correct, we need to addthe
proper constraints. We do this by requiring thatci(< w,xi >

+b) − 1 ≥ 0, whereci is 1, if xi ∈ C1 and−1, if xi ∈ C2.
We add these constraints to the optimization problem using
non-negative Lagrange multipliersαi. Thus the Langangian
becomes:

LP =
1

2
||w||2 −

∑

i

αici(< w,xi > +b) +
∑

i

αi (3)

Requiring that the derivative ofLP with respect tow and
b vanishes, we obtain that:

w =
∑

i

αiyixi (4)

∑

i

αiyi = 0

Replacing (4) in (3) we formulate the Wolfe Dual ofLP :

LD =
∑

i

αi −
1

2

∑

i

αiαjyiyj < xi,xj > (5)

One of the Wolfe Dual’s (LD) properties is that its maximum
occurs for the same values ofw, b andαi as the minimum of
LP .

The SVM can be trained by maximizing (5) and using the
values of the Lagrange multipliers to determinew according
to (4). After the maximization, only a fewαi will be non-zero.
The data pointsxi whose Lagrange multipliers are non-zero
are called the support vectors.

In the case where the data are not linearly separable, the
SVM’s parameters after training are still determined by (4),
with the difference that some classification errors are allowed
and fewer points become support vectors. However, this is
still not enough to produce satisfactory classification results
on classes that are very hard to separate. In this case, a non-
linear mappingΦ is used to project the data to a higher
dimensionality space, where the classes may indeed be linearly
separable, or, in any case, more easily separable.



The problem that arises from this approach is thatΦ is
not always practical or even possible to compute. SVMs
can overcome this problem by using the appropriate kernel
function for the different mappingsΦ. A functionk is a kernel
function for the mappingΦ iff:

k(xi,xj) =< Φ(xi),Φ(xj) >

whereΦ(xi) andΦ(xi) are the projections of thexi andxj

accoring to the mappingΦ.
When a vectort has to be classified by a trained SVM, the

output of the SVM is:

t ∈

{

C1, if
∑

s αsysk(t,xs) ≥ 0
C2, if

∑

s αsysk(t,xs) < 0

wherexs are the selected support vectors.

IV. T EMPLATE MATCHING

A simple baseline template matching technique has also
been used. A class template is constructed for the frontal facial
class and test images are classified according to their euclidean
distance from that template. The template is constructed by
calculating the arithmetic mean of all the vectors of this class.
There is a threshold for that distance, below which the test
image is accepted as a member of the class and above which
it is rejected, i.e. it is assigned to the non-frontal facialclass.

V. EXPERIMENTS

Our objective in this paper was two-fold. Our first objective
was to determine how much of an improvement does the
DNMF provide over using the raw (image intensity) data along
with an SVM classifier. Our other objective was to test whether
using an SVM benefits more from DNMF than a classifier
that depends on data being clustered around the class center,
namely template matching.

Our experiments were conducted on data obtained from the
XM2VTS face database [9]. Face tracking was applied on the
head rotation shot videos, that depict people that start from
a frontal pose, turn their heads to their right profile, back to
frontal pose then to the left profile. The images were then
rescaled to a size of30 × 40. There are6862 facial images
captured this way, with2486 of them being frontal and4376
non-frontal.

We first reshaped every30 × 40 image into a vector with
1200 elements. We then randomly split the data vectors in
half for both classes to form the raw data training and test sets.
Thus, both sets consisted of1243 frontal face images and2188
non-frontal images with no overlaps between the sets. We then
used the DNMF algorithm to reduce the dimensionality to100
for both the training and test sets.

Our baseline template matching test was the one described
in section IV. The baseline SVM test was feeding the raw data
into an SVM that used a second degree polynomial kernel. We
then repeated the above tests using the DNMF data sets.

The overall performance of the classifiers was judged by
their Equal Error Rate (EER), the point were the missclassi-
fication percentage of one class equals the missclassification

TABLE I
EERFOR ALL THE COMBINATIONS OF INPUT DATA AND CLASSIFIERS.

Template matching SVM
Raw data 0.1834 0.1191
DNMF 0.1689 0.0491

percentage of the other. As we can see from the EER results
in Table I, the baseline SVM classifier is significantly better
than the template matching classifier. Furthermore, DNMF,
as expected, improves both of these classifiers’ performance,
however the margin of improvement is larger in the SVM case.
The combination of DNMF and SVM provides the overall best
result.

Since in our case, but also in other cases, the subject
of the frontal face pose recognition task is to determine
whether an image is a suitable input for a face recognition
or facial expression recognition system that has been trained
using frontal face images, it is reasonable that we should be
able to favor, if needed, the non-frontal class, i.e. limit the
classification errors for data that belong to the non-frontal
class. Especially in the case of face recognition on a video
sequence, misclassifying some of the frontal face poses as non-
frontal still allows a system to determine through voting the
identity of the face from the rest of the frames where a frontal
face pose was correctly recognized. However, misclassifying
non-frontal poses as frontal ones and then feeding them to
the face recognition algorithm is sure to introduce erroneous
face recognition results that can negatively affect the voting
process.

In the template matching classifier, we can adjust the
balance of the two classes by setting the threshold that must
met in order for a facial image to be classified as frontal higher,
in order to accept more images as frontal, or lower, in order
to prevent non-frontal images accepted as frontal. In the SVM
case, the outputs of the classifier are in the range of[0, 1],
if the image is classified as frontal and[−1, 0) otherwise.
By introducing an additional bias applied to this result, we
can, again, favor either class during the classification. Figure
1 presents the varying error rates for both classes and all the
classifiers tested.

VI. CONCLUSION

In this paper we investigated the effect that DNMF, a
subspace technique, has on the performance of an SVM
classifier and compared it against the effect of DNMF on a
simple template matching classifier. Our primary goal was to
verify that using DNMF to preprocess the data before training
an SVM with them is indeed an improvement over an SVM
trained with the raw data.

Our experiments verifed this improvement, while also show-
ing that this improvement is more significant than the improve-
ment DNMF provides to template matching, a classification
method that DNMF is more obviously suited for. The SVM
fed with the DNMF data proved to be the best combination, in-
dicating that the high performance of the DNMF+SVM could
not only be attributed to the fact that the SVM is an extremely
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Fig. 1. Error rates for all the combinations of input data andclassifiers. The frontal class error is present with a solid line, while the non-frontal class error
is presented with a dotted line.

good cliassifer, as the SVM by itself had significantly lower
performance. The experimental results are also an indication
that other face related tasks can benefit from the combination
of DNMF with SVMs, though there is no concrete evidence
supporting this yet.
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