
Dynamic Shape Learning and Forgetting

Nikolaos Tsapanos1,2, Anastasios Tefas1 and Ioannis Pitas1,2

E-mail: {niktsap, tefas, pitas}@aiia.csd.auth.gr
?

1 Department of Informatics, Aristotle University of Thessaloniki, Box 451, 54124, Greece
2 Informatics and Telematics Institute, CERTH

Abstract. In this paper, we present a system capable of dynamically learning
shapes in a way that also allows for the dynamic deletion of shapes already
learned. It uses a self-balancing Binary Search Tree (BST) data structure in which
we can insert shapes that we can later retrieve and also delete inserted shapes.
The information concerning the inserted shapes is distributed on the tree’s nodes
in such a way that it is retained even after the structure of the tree changes due to
insertions, deletions and rebalances these two operationscan cause. Experiments
show that the structure is robust enough to provide similar retrieval rates after
many insertions and deletions.

1 Introduction

Object recognition by shape matching traditionally involves comparing an input test
shape with various known shapes by measuring their similarity (usually by applying
a Hausdorff based metric [3],[5]). The final matching returns the known shape that
has yielded the maximum similarity with the input test shape. As the shape database
becomes larger, however, exhaustive search becomes impractical. In order to overcome
this problem, there have been a few tree structure based approaches proposed, such
as the ones in [2] and [6]. An interesting property of the treestructure in [6] is that
it provides means to not only learn new shapes, but to also forget previously learned
shapes. In this paper, we perform various tests using this structure to determine its
actual ability to learn the shape database, use the shapes itstores to classify unknown
shapes and forget shapes without significant losses in classification performance for the
remaining shapes. The paper is structured as follows: Section 2 briefly describes the
structure, section 3 details the results of our experimentsand section 4 concludes the
paper.

2 Shape Trees

In this section we briefly describe the structure and the operations of the binary search
tree originally presented in [6]. For our purposes, we view ashape as a set of points

? The research leading to these results has received funding from the European Communi-
tys Seventh Framework Programme (FP7/2007-2013) under Grant agreement No. 211471
(i3DPost).

with 2-dimensional integer coordinates. We do so because this is the simplest way to
represent a shape, though there are several other, more complicated options [7].

The binary search tree consists of two types of nodes: leaf nodes and internal nodes.
The shapes are stored in the leaf nodes. The internal nodes contain a template for each
subtree, a matrix with the sum of the learned shapes in each subtree and they are used to
traverse the tree. In order to search for a test shape in a shape tree, we must find a path
of internal nodes from the root to the leaf node that corresponds to the matching shape.
This can be achieved by using the internal nodes’ parametersto measure the similarity
of the test shape with two templates, one for each subtree. This similarity is based on
the Hausdorff distance and is given by:

P (X ,Y) =
1

|X |

∑

x∈X

e−αd(x,Y) (1)

WhereX is the set of the test shape points,Y is the set of the internal node template
points,d(x,Y) is the distance from each pointx ∈ X to its closest pointy ∈ Y and
α is a parameter determining the strictness of the similarity. Note that this similarity
measure is directed and in the general caseP (X ,Y) 6= P (Y,X). The search is directed
to the root of the subtree whose template yielded the highestsimilarity P . For practical
purposes, a distance transform matrix [1] is used to calculate the measure instead of a
set of points.

We will now describe how the shape tree finds the closest matchof a test shape
consisting of a set of pointsX . Starting from the root of the tree we follow the path of
nodes as dictated by comparing the similarities ofX with each of the internal node’s
templates until we reach a leaf. That leaf node is reported asa possible result and the
search backtrack and reverses the decision on the least confident node until another leaf
node is reached, which is then reported as another possible result. This can be repeated
t− 1 times so that a list oft possible shape matches is formed. The final result is found
by exhaustively searching inside this list.

The insertion operation works almost identically with regular binary search trees.
A new leaf node is constructed with the input shape. The inputshape is then looked
up in the tree. As the search progresses, the parameters of each internal node visited
are updated by adding the input shape’s points into the sum matrix of the appropriate
subtree. The leaf node where the search ends is replaced by a new internal node, while
itself and the input shape leaf node become the new internal node’s children. Finally,
the reverse path to the root is followed in order to rebalanceand retrain nodes in case
the tree has become unbalanced after the insertion.

The deletion operation is more limited in shape trees, as only the deletion of leaf
nodes is supported. Starting from the deleted node, the pathto the root of the tree is
followed, in order to properly update the internal nodes’ parameters by subtracting the
deleted shape’s points from the appropriate sum matrix, andto rebalance and retrain
any nodes as necessary. Since the deletion of a leaf node can leave an internal node
childless and this is not allowed in shape trees, any node left childless is marked for
deletion. The process is repeated until there are no more nodes marked for deletion.

Rebalancing the tree can be achieved by using the standard LL, LR, RL, RR rota-
tions with one exception: if the top node during an LL or RR rotation has only one child.

Performing an LL or RR rotation in this case would make an internal node childless. In
this case, the top node is simply removed and replaced with its child. When a node is
affected by the rotation, it has to be retrained by extracting the new templates from the
sum matrix of each subtree.

3 Experiments

3.1 The database

All the experiments were conducted using the MNIST handwritten digits database [4].
This database contains70046 28× 28 images of the numbers0 through9 as written by
250 writers. They are separated into a subset of60027 training images and a subset of
10019 test images.

3.2 The system

We implemented a system that uses shape trees to classify handwritten digit images.
We labeled every image with the digit it depicts. The shape ofeach image was extracted
by thresholding the brightness of the pixels to obtain a binary matrix in which the1s
formed the shape of the digit. Every shape of the training setwas inserted into the tree in
random order. In order to classify an input shapeX , we used the tree to find a list of the
t closest matchesY1 . . .Yt, as previously explained. The final decision was the label of
the shapeYf such thatf = arg maxi (min (P (X ,Yi), P (Yi,X))). The classification
was considered to be correct if the label ofX matched the label ofYf .

All the tests run on an AMD Athlon X2 6400 processor (each coreclocked at
3.2GHz). Every averaged number is presented asmean (standard deviation).

3.3 Insertion and Deletion

In this test we started with an empty tree and proceeded to insert all the60027 shapes
of the training set into it. We measured the time each insertion took. The graph of
these values can be seen in Figure 1(a). By observing the graph, we can see that it
reasonably follows a logarithmic curve, as theoretically expected. The various spikes
are attributed to insertions that cause more rebalances than usual. Average insertion
time was0.0026(0.0006) ms, while total tree construction time was154 seconds.

Starting from the tree constructed in the previous test, we deleted every shape that
the tree contained and measure the time each deletion took. The graph of these values
can be seen in Figure 1(b). Again, the spikes in the graph are attributed to some deletions
causing a greater number of rebalances. Average deletion time was0.00023(0.00029)
ms, while the total time it took to empty the tree was14 seconds.

3.4 Generalization Capabilities

Generalization capabilities were tested by first insertingthe training set into the tree then
using that tree to classify the test set. The number of tries was set at64, as this number

0 1 2 3 4 5 6 7

x 10
4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Nodes inserted

T
im

e
in

 s

(a) The times (in s) that a node in-
sertion takes vs. number of nodes al-
ready in tree.

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7
x 10

−3

Nodes deleted

T
im

e
in

 s

(b) The times (in s) that a node in-
sertion takes vs. number of nodes al-
ready deleted from the tree.

Fig. 1. Insertion and deletion times.

seemed to yield improved results without slowing down the classification procedure
considerably.

We used the60027 shapes for training and tested the resulting trees in the10019
digits that were designated as the test set. The shapes are inserted into the tree in random
order. However, it is obvious that different insertion orders will produce different shape
trees. Thus, in order to illustrate the effect of the insertion ordering has on the classi-
fication performance, we construct ten different trees thatcorrespond to ten different
random orderings of the inserted shapes.

The average classification rates and search times for this batch of trees are reported
in Table 1. Total average classification rate was 0.9286 . Results also suggest that shape
trees are consistent in their performance, as there are no wild variations in classification
rates.

Digit 0 1 2 3 4 5 6 7 8 9
Rate 0.990.990.940.930.920.890.970.920.870.88

Table 1. Average classification rates for the trees trained with60027 shapes and tested
on10019 shapes.

3.5 Robustness

We tested the proposed data structure’s robustness to multiple insertions and deletions.
We used the original training set to train the tree and the original test set to measure
classification rates. Since the classes that are most likelyto be confused with each other
are those that correspond to the digits3, 5 and8, we begin by inserting these shapes
into the initial tree. We denote the fact that the tree currently contains these digits as
{3, 5, 8}. Thus, we consider the worst case scenario where the most difficult classes are

Digits in tree 0 1 2 3 4 5 6 7 8 9
{3, 5, 8} - - - 0.92 - 0.93 - - 0.96 -

{3, 5, 8} ⊕ {0, 1} 0.99 0.99 - 0.91 - 0.92 - - 0.94 -
{0, 1, 3, 5, 8} ⊕ {7, 9} 0.99 0.99 - 0.90 - 0.91 - 0.95 0.92 0.93

{0, 1, 3, 5, 7, 8, 9} 	 {0, 9} - 0.99 - 0.91 - 0.93 - 0.98 0.95 -
{1, 3, 5, 7, 8} ⊕ {4, 6} - 0.99 - 0.90 0.98 0.91 0.98 0.96 0.91 -

{1, 3, 4, 5, 6, 7, 8} 	 {1, 4, 6, 7} - - - 0.92 - 0.92 - - 0.96 -
{3, 5, 8} ⊕ {0, 1, 2, 4, 6, 7, 9} 0.98 0.96 0.93 0.87 0.93 0.88 0.97 0.94 0.89 0.89

Table 2. Classification rates at the various stages of the robustnessexperiment.

always present inside the shape tree. We denote the insertion of additional digits with
the symbol⊕ and the deletion of digits with the symbol	.

After starting with the initial tree, we proceed to insert and delete digits at con-
secutive stages. At each new stage (after the insertions or deletions are finished), we
measure the classification rates for all the digits that are into the tree at the current
stage. We also monitor the classification rates for the digits 3, 5 and8 the are present
at every stage. The graph that contains the change of classification rates of the three
most difficult classes over the stages of this experiment canbe seen in Figure 2, while
the classification rates of all the digits involved in all thestages are presented in table
2 with a ’-’ denoting that the tree is not trained for that specific digit and that digit is
therefore not tested.

By observing Figure 2 we can see that the classifier has an easier time classifying
the three digits when there are fewer overall shapes stored in the tree. The classification
rate decreases when more shapes are inserted and increases as shapes are removed. Note
that when the only shapes inside the tree are those that correspond to the digits3, 5 and
8 in stage6 of the experiment their classification rate is the same as it was in the ini-
tial tree that also contained these three digits only. Furthermore, the final classification
rates match the ones in Table 1, obtained from the generalization test. This observation
highlights the online training capabilities of the proposed shape tree.

1 2 3 4 5 6 7
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Test stages

C
la

ss
ifi

ca
tio

n
ra

te

Fig. 2. The classification rate graphs for the digits3 (solid line),5 (dotted line) and8 (dashed
line).

3.6 Application to human detection

Since BSTs emphasize matching speed, shape trees can also beused in a fast human
detection system. By training a tree with human silhouettes, we can scan the edge map
of an image to quickly find potential matches. The resulting matches can either be
thresholded, or passed through another, stronger classifier in order to be accepted as
detections. Figure 3 shows a few sample detections using shape trees. These detections
were carried out on multiview image data filmed at the University of Surrey under the
i3dPost project. The tree was trained using silhouettes generated by the Poser software.

Fig. 3. Sample human detections using shape trees.

4 Conclusion

In this paper, the performance of a shape learning structurehas been tested. Experiments
performed on the MNIST handwritten digit database indicatethat the structure is very
efficient in terms of speed, performance and scalability. Itcan learn new shapes with
reasonable loss in classification performance and even forget previously learned while
retaining its classification abilities on the data that are still stored inside it.

References

1. Gunilla Borgefors. Distance transformations in digitalimages. InComputer Vision, Graphics,
and Image Processing, Volume 34 , Issue 3, pp. 344-371, June 1986.

2. Dariu M. Gavrila. A bayesian, exemplar-based approach tohierarchical shape matching.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(8):1408–1421, August 2007.

3. G. Klanderman D. Huttenlocher and W.J. Rucklidge. Comparing images using the Hausdorff
distance.IEEE Trans. Pattern Analysis and Machine Intelligence, 15(9):850–863, September
1993.

4. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(7):2278–2324, January 1998.

5. W.J. Rucklidge. Locating objects using the Hausdorff distance.Proceedings of Fifth Interna-
tional Conference on Computer Vision, 146(7):457–464, January 1995.

6. N. Tsapanos, Anastasios Tefas, and Ioannis Pitas. An online self-balancing binary search tree
for hierarchical shape matching. InVISAPP (1), pages 591–597, 2008.

7. Dengsheng Zhang and Guojun Lu. Review of shape representation and description techniques.
Pattern Recognition, 37(1):1–19, 2004.

