Dynamic Shape L earning and For getting

Nikolaos Tsapands’, Anastasios Tefasand loannis Pitds®
E-mail: {niktsap, tefas, pitas}@iia.csd.auth.gr

! Department of Informatics, Aristotle University of Theksaki, Box 451, 54124, Greece
2 Informatics and Telematics Institute, CERTH

Abstract. In this paper, we present a system capable of dynamicallyiteg
shapes in a way that also allows for the dynamic deletion apeb already
learned. It uses a self-balancing Binary Search Tree (B&tB)structure in which
we can insert shapes that we can later retrieve and alseedebrted shapes.
The information concerning the inserted shapes is digetban the tree’s nodes
in such a way that it is retained even after the structure®frbe changes due to
insertions, deletions and rebalances these two operat@mesause. Experiments
show that the structure is robust enough to provide siméaiiaval rates after
many insertions and deletions.

1 Introduction

Object recognition by shape matching traditionally ines\wcomparing an input test
shape with various known shapes by measuring their sinyilé@usually by applying
a Hausdorff based metric [3],[5]). The final matching retuthe known shape that
has yielded the maximum similarity with the input test shaje the shape database
becomes larger, however, exhaustive search becomes iticptalm order to overcome
this problem, there have been a few tree structure basesdagps proposed, such
as the ones in [2] and [6]. An interesting property of the s&ecture in [6] is that
it provides means to not only learn new shapes, but to algetgreviously learned
shapes. In this paper, we perform various tests using thistste to determine its
actual ability to learn the shape database, use the shagtesds to classify unknown
shapes and forget shapes without significant losses inftdasi®n performance for the
remaining shapes. The paper is structured as follows: @egtibriefly describes the
structure, section 3 details the results of our experimantssection 4 concludes the
paper.

2 ShapeTrees

In this section we briefly describe the structure and theaters of the binary search
tree originally presented in [6]. For our purposes, we vieghape as a set of points

* The research leading to these results has received fundimg the European Communi-
tys Seventh Framework Programme (FP7/2007-2013) undemt Ggreement No. 211471
(i3DPost).

with 2-dimensional integer coordinates. We do so becausagitthe simplest way to
represent a shape, though there are several other, mordicateg options [7].

The binary search tree consists of two types of nodes: leddsiand internal nodes.
The shapes are stored in the leaf nodes. The internal nodé&siica template for each
subtree, a matrix with the sum of the learned shapes in edatfesuand they are used to
traverse the tree. In order to search for a test shape in & $tesgy we must find a path
of internal nodes from the root to the leaf node that corradpdo the matching shape.
This can be achieved by using the internal nodes’ paramitengasure the similarity
of the test shape with two templates, one for each subtrde.sithilarity is based on
the Hausdorff distance and is given by:

1
P(X,9) = 37 D ey (1)

xeX

Where X is the set of the test shape poinsjs the set of the internal node template
points,d(x,) is the distance from each poirte X to its closest poiny €) and

« is a parameter determining the strictness of the similaNtyte that this similarity
measure is directed and in the general da&¥, Y) # P(Y, X). The search is directed
to the root of the subtree whose template yielded the higtesfarity P. For practical
purposes, a distance transform matrix [1] is used to catleulee measure instead of a
set of points.

We will now describe how the shape tree finds the closest nadtehtest shape
consisting of a set of point¥’. Starting from the root of the tree we follow the path of
nodes as dictated by comparing the similaritiestoWith each of the internal node’s
templates until we reach a leaf. That leaf node is reporteal @sssible result and the
search backtrack and reverses the decision on the leastientifiode until another leaf
node is reached, which is then reported as another poseilé.rThis can be repeated
t — 1 times so that a list of possible shape matches is formed. The final result is found
by exhaustively searching inside this list.

The insertion operation works almost identically with riegbinary search trees.
A new leaf node is constructed with the input shape. The ispape is then looked
up in the tree. As the search progresses, the parameterstofreaarnal node visited
are updated by adding the input shape’s points into the sutrxned the appropriate
subtree. The leaf node where the search ends is replaceddyy iaternal node, while
itself and the input shape leaf node become the new inteodg’s children. Finally,
the reverse path to the root is followed in order to rebalaragretrain nodes in case
the tree has become unbalanced after the insertion.

The deletion operation is more limited in shape trees, ag @ deletion of leaf
nodes is supported. Starting from the deleted node, thetpatie root of the tree is
followed, in order to properly update the internal nodesapaeters by subtracting the
deleted shape’s points from the appropriate sum matrix,tadbalance and retrain
any nodes as necessary. Since the deletion of a leaf nodeaas &n internal node
childless and this is not allowed in shape trees, any nodeléless is marked for
deletion. The process is repeated until there are no morestodrked for deletion.

Rebalancing the tree can be achieved by using the standandR,LRL, RR rota-
tions with one exception: if the top node during an LL or RRatmn has only one child.

Performing an LL or RR rotation in this case would make anrimdénode childless. In
this case, the top node is simply removed and replaced wgitthild. When a node is
affected by the rotation, it has to be retrained by extrgdire new templates from the
sum matrix of each subtree.

3 Experiments

3.1 Thedatabase

All the experiments were conducted using the MNIST handenitigits database [4].
This database contaif8046 28 x 28 images of the numbefsthrough9 as written by
250 writers. They are separated into a subsei@@f27 training images and a subset of
10019 test images.

3.2 Thesystem

We implemented a system that uses shape trees to classifiyvhitan digit images.
We labeled every image with the digit it depicts. The shapesach image was extracted
by thresholding the brightness of the pixels to obtain adyimaatrix in which thels
formed the shape of the digit. Every shape of the trainingvastinserted into the tree in
random order. In order to classify an input shapewve used the tree to find a list of the
t closest matche¥, ...), as previously explained. The final decision was the label of
the shap&); such thatf = argmax; (min (P(X,);), P(Y;, X))). The classification
was considered to be correct if the labePoimatched the label QY.

All the tests run on an AMD Athlon X2 6400 processor (each odoeked at
3.2GHz). Every averaged number is presentethean (standard deviation).

3.3 Insertion and Deletion

In this test we started with an empty tree and proceeded &stia$l the60027 shapes
of the training set into it. We measured the time each irmertbok. The graph of
these values can be seen in Figure 1(a). By observing thégve can see that it
reasonably follows a logarithmic curve, as theoreticallpexted. The various spikes
are attributed to insertions that cause more rebalancesusal. Average insertion
time was0.0026(0.0006) ms, while total tree construction time was4 seconds.

Starting from the tree constructed in the previous test, aletdd every shape that
the tree contained and measure the time each deletion tbekgmph of these values
can be seenin Figure 1(b). Again, the spikes in the graphiaitesied to some deletions
causing a greater number of rebalances. Average deletienwias).00023(0.00029)
ms, while the total time it took to empty the tree walsseconds.

3.4 Generalization Capabilities

Generalization capabilities were tested by first inseftiggraining set into the tree then
using that tree to classify the test set. The number of trees et aé4, as this number

o 1 2 3 7 (] 1 2

3 4 5 3 4 5 6 7
Nodes inserted 10t Nodes deleted

x10°

(a) The times (in s) that a node ifB) The times (in s) that a node in-
sertion takes vs. number of nodes sg+tion takes vs. number of nodes al-
ready in tree. ready deleted from the tree.

Fig. 1. Insertion and deletion times.

seemed to yield improved results without slowing down tteessiffication procedure
considerably.

We used the&0027 shapes for training and tested the resulting trees irl tivé9
digits that were designated as the test set. The shapesarteuhinto the tree in random
order. However, it is obvious that different insertion ai@ill produce different shape
trees. Thus, in order to illustrate the effect of the insertbrdering has on the classi-
fication performance, we construct ten different trees doatespond to ten different
random orderings of the inserted shapes.

The average classification rates and search times for ttih bétrees are reported
in Table 1. Total average classification rate was 0.9286 ulRealso suggest that shape
trees are consistent in their performance, as there areldwaviations in classification
rates.

Digtf 0| 1|2|3|4|5|6|7|8]9
Rate|0.990.990.940.930.920.890.97/0.920.87,0.88
Table 1. Average classification rates for the trees trained with27 shapes and tested
on 10019 shapes.

3.5 Robustness

We tested the proposed data structure’s robustness tgoiteutisertions and deletions.
We used the original training set to train the tree and thegimal test set to measure
classification rates. Since the classes that are most likddg confused with each other
are those that correspond to the digit$ and8, we begin by inserting these shapes
into the initial tree. We denote the fact that the tree cutyerontains these digits as
{3,5,8}. Thus, we consider the worst case scenario where the méisttlitlasses are

Digits in tree 0] 1] 213]4]5]6] 7809
13,5,8) - [- [092 - [093 - | - [0.9§ -

13,5,8) ®{0,1} 0.990.99 - [0.91 - [0.92 - | - |0.94 -
10,1,3,5,8) ® 17,9} 0.990.99 - [0.90 - |0.91] - |0.950.920.93
10,1,3,5,7,8,9 5{0,9F | - |0.99 - [0.91] - [0.93 - [0.980.95 -
{1,3,5,7,8) @ 14,6} -~ [0.99 -]0.900.980.91]0.980.96/0.91 -
{1,3,4,5,6,7,8 ©61{1,4,6, 7} - | - | - 092 - [0.92 - | - [0.96 -
13,5,8) ® {0,1, 2,4, 6,7,9} |0.980.96/0.930.870.930.880.970.94/0.890.89

Table 2. Classification rates at the various stages of the robuséexpssiment.

always present inside the shape tree. We denote the imseftadditional digits with
the symbolp and the deletion of digits with the symbeol

After starting with the initial tree, we proceed to inserdagtelete digits at con-
secutive stages. At each new stage (after the insertionsleti@hs are finished), we
measure the classification rates for all the digits that ate the tree at the current
stage. We also monitor the classification rates for the glgic and8 the are present
at every stage. The graph that contains the change of ctaskifi rates of the three
most difficult classes over the stages of this experimenbeaseen in Figure 2, while
the classification rates of all the digits involved in all gtages are presented in table
2 with a -’ denoting that the tree is not trained for that gfiedigit and that digit is
therefore not tested.

By observing Figure 2 we can see that the classifier has aerdase classifying
the three digits when there are fewer overall shapes storéxitree. The classification
rate decreases when more shapes are inserted and incressapes are removed. Note
that when the only shapes inside the tree are those thaspomnd to the digit8, 5 and
8 in stage6 of the experiment their classification rate is the same as# w the ini-
tial tree that also contained these three digits only. Feurttore, the final classification
rates match the ones in Table 1, obtained from the genetiatiz@st. This observation
highlights the online training capabilities of the propdshape tree.

Fig. 2. The classification rate graphs for the digitgsolid line),5 (dotted line) an® (dashed
line).

3.6 Application to human detection

Since BSTs emphasize matching speed, shape trees can alsed@ a fast human
detection system. By training a tree with human silhougttescan scan the edge map
of an image to quickly find potential matches. The resultingtahes can either be
thresholded, or passed through another, stronger clagsif@der to be accepted as
detections. Figure 3 shows a few sample detections usinmedhees. These detections
were carried out on multiview image data filmed at the Uniitgisf Surrey under the
i3dPost project. The tree was trained using silhouettesmg¢ed by the Poser software.

Fig. 3. Sample human detections using shape trees.

4 Conclusion

In this paper, the performance of a shape learning strubas®een tested. Experiments
performed on the MNIST handwritten digit database indithass the structure is very
efficient in terms of speed, performance and scalabilitgalt learn new shapes with
reasonable loss in classification performance and eveetfprgviously learned while
retaining its classification abilities on the data that ditbstored inside it.

References

1. Gunilla Borgefors. Distance transformations in digitaages. InComputer Vision, Graphics,
and Image Processing, Volume 34 , Issue 3, pp. 344-371, June 1986.

2. Dariu M. Gavrila. A bayesian, exemplar-based approatiet@rchical shape matchindEE
Transactions on Pattern Analysis and Machine Intelligence, 29(8):1408-1421, August 2007.

3. G. Klanderman D. Huttenlocher and W.J. Rucklidge. Colingamages using the Hausdorff
distance |EEE Trans. Pattern Analysis and Machine Intelligence, 15(9):850-863, September
1993.

4. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradieaséd learning applied to document
recognition.Proceedings of the IEEE, 86(7):2278—-2324, January 1998.

5. W.J. Rucklidge. Locating objects using the Hausdorffattise.Proceedings of Fifth Interna-
tional Conference on Computer Vision, 146(7):457—-464, January 1995.

6. N. Tsapanos, Anastasios Tefas, and loannis Pitas. Anesdilf-balancing binary search tree
for hierarchical shape matching. VWSAPP (1), pages 591-597, 2008.

7. Dengsheng Zhang and Guojun Lu. Review of shape repreésengéad description techniques.
Pattern Recognition, 37(1):1-19, 2004.

