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ABSTRACT

In this paper, a novel method for enhancing the perfor-
mance of elastic graph matching in face authentication is
proposed.The starting point is to weigh the local matching
errors at the nodes of an elastic graph according to their
discriminatory power. We propose a novel approach to dis-
criminant analysis that re-formulates Fisher’s Linear Dis-
criminant ratio to a quadratic optimization problem sub-
ject to inequality constraints by combining statistical pat-
tern recognition and support vector machines. The method
is applied to frontal face authentication on the database of
the European Union research project M2VTS. Experimen-
tal results indicate that the performance of morphological
dynamic link architecture, a variant of elastic graph match-
ing, is highly improved by using the proposed weighting
technique.

1. INTRODUCTION

Automated face recognition has exhibited a tremendous
growth for more than two decades. Many techniques for
face recognition have been developedwhose principles span
several disciplines, such as image processing, pattern recog-
nition, computer vision and neural networks [1]. The in-
creasing interest in face recognition is mainly driven by ap-
plication demands, such as nonintrusive identification and
verification for credit cards and automatic teller machine
transactions, nonintrusive access-control to buildings, iden-
tification for law enforcement, etc.

A well-known approach to face recognition and authen-
tication is the so-called dynamic link architecture (DLA), a
general object recognition technique, that represents an ob-
ject by projecting its image onto a rectangular elastic grid
where a Gabor wavelet bank response is measured at each
node [2]. Recently, a variant of dynamic link architecture
based on multiscale dilation-erosion, the so-called morpho-
logical dynamic link architecture (MDLA), was proposed
and tested for face authentication [3, 4].

This paper addresses the derivation of optimal coeffi-
cients that weigh the local matching errors determined at
each grid node by the elastic graph matching procedure. We
propose to weigh the local matching errors at the grid nodes
by a novel approach that combines statistical pattern recog-

nition (i.e., discriminant analysis) [5, 6] and Support Vec-
tor Machines [7, 8]. Our approach re-formulates Fisher’s
Linear Discriminant ratio to a quadratic optimization prob-
lem subject to inequality constraints. Linear Support Vector
Machines are then constructed to yield the optimal separat-
ing hyperplanes. The proposed method has been applied
to frontal face authentication on the database of the Eu-
ropean Union research project M2VTS [9]. Experimental
results indicate that the performance of morphological dy-
namic link architecture, a variant of elastic graph matching,
is highly improved by using the proposed weighting tech-
nique reaching an EER of 5.6 %.

2. PROBLEM STATEMENT

A widely known face recognition algorithm is the elastic
graph matching [2]. The method is based on the analysis
of a facial image region and its representation by a set of
local descriptors extracted at the nodes of a sparse grid (i.e.,
a feature vector):

j�x� �
�
�f��x�� � � � � �fM �x�

�
(1)

where �fi�x� denotes the output of a local operator applied
to image f at the i-th scale or at the i-th pair (scale, orienta-
tion), x defines the pixel coordinates andM is feature vector
dimensionality. The grid nodes are either evenly distributed
over a rectangular image region or they are placed on cer-
tain facial features (e.g., nose, eyes, etc.) called fiducial
points. In both cases a face/facial feature detection algo-
rithm is needed. In this paper, we mainly resort to a variant
of the approach proposed by Yang and Huang [10] that is
based on multiresolution images, the so-called mosaic im-
ages [11].

Let the superscripts t and r denote a test and a reference
person (or grid), respectively. TheL� norm between the fea-
ture vectors at the l-th grid node is used as a (signal) sim-
ilarity measure, i.e., Cv�j�x

t
l�� j�x

r
l �� � kj�xtl� � j�xrl �k.

The objective in elastic graph matching is to find the set of
test grid node coordinates fxtl � l � Vg that minimizes the
cost function:

D�t� r� �
X
l�V

Cv�j�x
t
l�� j�x

r
l ��



subject to xtl � xrl � s� �l� k�lk � �max (2)

where s is the global transposition of the graph and the
choice of �max controls the rigidity/plasticity of the graph.

Let ct � IRL be a column vector comprised by the match-
ing errors between a test person t and a reference person r

at all grid nodes, i.e.:
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���
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�
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where L is the cardinality of V . Hereafter, ct is referred
as the matching vector between the test person t and the
reference person r. Using matrix notation, (2) is rewritten
as

D�t� r� � �T ct� (4)

where � is an L � � vector of ones. That is, the classical
elastic graph matching treats uniformly all local matching
errors Cv�j�x

t
l �� j�x

r
l ��. The weighting of the local match-

ing errors can be expressed as:

D��t� r� � wT
r ct (5)

where wr is the vector of coefficients we search for. Let us
denote by Sr the class of matching vectors that belong to
the reference person. Let also S denote the set of matching
errors of the training set. Throughout the paper we study a
two-class problem, namely, to separate efficiently all match-
ing vectors that are attributed to a client (i.e., the reference
person r) from the matching vectors that belong to anybody
else (i.e., the class of ct � �S � Sr�, which constitutes the
set of impostors for client r).

3. CONSTRAINED LEAST SQUARES
OPTIMIZATION

Let �mC and �mI denote the class sample mean of the match-
ing vectors ct that correspond to client claims related to
the reference person r and those corresponding to impos-
tor claims related to person r, respectively. Let also NC

and NI be the corresponding numbers of matching vectors
that belong to these two classes. Obviously, the total num-
ber of matching vectors N is equal to NC � NI . Let SW
and SB be within-class and between-class scatter matrices,
respectively.

Let us suppose that we would like to linearly transform
the matching vector (e.g., (5)). Four feature selection crite-
ria are studied in detail in [5]. The most known criterion is
to choose wr so that the ratio of the trace of the between-
class scatter matrix and the trace of the within-class scatter
matrix of the transformed matching vectors is maximized.
Since in our case the transformed matching vector is merely
the scalar wT

r ct (i.e., the weighted distance measure), the
optimization criterion is simplified to the ratio of between-
class and within-class variances, i.e.:

J�wr� �
wT
r SBwr

wT
r SWwr

� (6)

This is the so-called Fisher’s discriminant ratio. The coeffi-
cient vectorwr�o that maximizes (6) is given by:

wr�o � S��W �mI �mC� (7)

and yields Fisher’s linear discriminantwT
r�oct. It is straight-

forward to prove that the minimization of:

J ��wr� � wT
r �SW � SB�wr (8)

subject to the equality constraint:

wT
r SBwr � � � const� � � � (9)

yields the coefficient vector:

w�
r � � S��W �mI �mC� (10)

where � is a proporptionality constant given by:

� �

s
�

�PC �PI

�

� �mI � �mC�
T
S��W � �mI � �mC�

� (11)

It is seen that the coefficient vector given by (10), which is
optimal with respect to the criterion (8 - 9), is still in the
direction of the coefficient vector that minimizes Fisher’s
discriminant ratio. The nice property of the optimality cri-
terion (8) is that it rewrites Fisher’s discriminant ratio as a
quadratic optimization criterion subject to an equality con-
straint (e.g., a constraint least-squares criterion), thus en-
abling the use of Lagrange multipliers which is a more
straightforward optimization procedure than the solution of
a generalized eigenvalue problem. However, the equality
constraint (9) seems to be too restrictive. We shall modify
the objective and the constraint functions as follows:

minimize wT
r SWwr (12)

subject to wT
r �mI �mC� � �T �mI �mC��(13)

The new criterion minimizes the within-class variance while
the difference between class centers (i.e., the average dis-
tance measure over client claims EfD��t� r� j ct � Srg
and the average distance measure over impostor claims
EfD��t� r� j ct � �S � Sr�g) is not reduced after linear
weighting. Therefore the interpretation of (12-13) agrees
with that of FLD ratio. It is straightforward to show that the
inequality constraint (13) can be rewritten as

NX
t��

kt�w
T
r � �T �ct � � (14)

where

kt �

	
�NI � ct � Sr
NC � ct � �S � Sr��

(15)

The inequality constraint (14) can be combined with the
quadratic objective function (12) to yield a linearly con-
strained least squares problem that can be solved by con-
strained quadratic optimization methods [12]. The La-
grangian function to be minimized is:

Lp�wr� �� � wT
r SWwr � �

NX
t��

kt�w
T
r � �T �ct (16)



where � is the Lagrange multiplier. To find the stationary
point (wr�o, �o) of (16), we solve the set of equations:

rwr
Lp�wr�o� �o� � � (17)

	

	�
Lp�wr�o� �o� � �� (18)

The first-order necessary conditions or Kuhn-Tucker (KT)
conditions [12] imply that, if wr�o is a local minimum of
the problem (12) and (14), it should satisfy (17), under the
regularity assumption that the intersection of the set of fea-
sible directions with the set of descent directions coincides
with the intersection of the set of feasible directions for lin-
earized constraints with the set of descent directions, i.e.:

wr�o �
�

�
�oS

��
W

NX
t��

ktct (19)

subject to �o � � (20)

�o

NX
t��

kt�w
T
r�o � �T �ct � � (21)

where (21), also known as complementary condition, states
that both �o and

PN
t�� kt�w

T
r�o��

T �ct cannot be nonzero.
The stationary solution �o of (18) is found by solving the
Wolfe dual problem [12], i.e.:

maximize Lp�wr� �� subject to (19) and � � �. (22)

By substituting (19) into (16), we obtain the Wolfe dual ob-
jective function:

W��� � �

NX
t��

kt�
T ct�

�

	
��

NX
t��

NX
j��

ktkjc
T
t S

��
W cj
 �z �

Htj

(23)

which is maximized for �o given by:

�o �
�
PN

t�� kt�
T ct

�TH�
(24)

provided that �TH� � �. The numerator in (24) is al-
ways non-negative by construction (i.e., the average dis-
tance measure over client claims is always less than the
average distance measure over impostor claims). By sub-
stituting �o given by (24) into (19), we obtain the optimal
coefficient vector for the criterion (12,14), i.e.:

wr�o �


PN
t�� kt�

T ct

�TH�

�
S��W

NX
t��

ktct� (25)

It is obvious that, except the scaling factor given by the term
inside brackets, the direction of wr�o given by (25) coin-
cides with that of (7) which maximizes Fisher’s discrimi-
nant ratio as well as with that of (10) which maximizes the
objective criterion (8) and (9).

4. SUPPORT VECTOR MACHINE FORMULATION

Support Vector Machines (SVMs) is a state-of-the-art pat-
tern recognition technique whose foundations are stemming

from statistical learning theory [7]. However, the scope of
SVMs is beyond pattern recognition, because they can han-
dle also another two learning problems, i.e., regression esti-
mation and density estimation. Accordingly, SVM is a gen-
eral algorithm based on guaranteed risk bounds of statistical
learning theory, i.e., the so-called structural risk minimiza-
tion principle. SVM is a learning machine capable of imple-
menting a set of functions that approximate best the supervi-
sor’s response with an expected risk bounded by the sum of
the empirical risk and the Vapnik-Chervonenkis (VC) confi-
dence, a bound on the generalization ability of the learning
machine, that depends on the so-called VC dimension of the
set of functions implemented by the machine.

Motivated by the fact that SVM training algorithm con-
sists of a quadratic programming problem, we shall refor-
mulate the criterion of minimizing the within-class variance
so that it can be solved by constructing the optimal separat-
ing hyperplane (linear SVM). The extension of the proposed
method for the non-separable case as well as for the optimal
nonlinear separating decision surface can be done following
similar approach.

Suppose the training data:

�c�� y��� � � � � �cN � yN�� ct � IRL� (26)

yt �

	
� if ct � �S � Sr�

�� if ct � Sr

can be separated by a hyperplane:

gwr�b�ct� � wT
r ct � b � � (27)

with the property:

gwr�b�ct� � � if yt � �

gwr�b�ct� � �� if yt � �� (28)

where b is a bias term. In compact notation, the set of in-
equalities (28) can be rewritten as:

yt�w
T
r ct � b�� � � � t � �� � � � � N� (29)

Let us define the distance v�wr� b
 ct� of a matching vector
ct from the hyperplane (27) as:

v�wr� b
 ct� �
j wT

r ct � b j

kwrkSW
�

j wT
r ct � b j

�wT
r SWwr����

(30)

where the norm of the coefficient vector wr is measured
with respect to the within-scatter matrix SW . In our case,
the optimal hyperplane is given by maximizing the margin:


�wr� b� � min
ct��S�Sr�

v�wr� b
 ct� � (31)

� min
ct�Sr

v�wr� b
 ct� �
�

�wT
r SWwr����

�

Equivalently, the optimal hyperplane separates the data so
that the within-class variance is minimized, i.e., the objec-
tive function (12). The optimization is subject to the con-
straint functions (29). By comparing (13) with (29), we
observe that more than one inequality constraints are now



imposed that demand the distance measuresD��t� r� related
to impostor claims to be linearly separable from the distance
measuresD��t� r� related to client claims on the training set.
For completeness, we mention that the standard SVM would
solve the problem [7]:

minimize JSVM�wr� � wT
r wr subject to (29)� (32)

The solution of the optimization problem under study is
given by the saddle point of the Lagrangian:

L�wr� b��� � wT
r SWwr �

NX
t��

�tfyt�w
T
r ct � b�� �g

(33)
where � � ���� � � � � �N �

T is the vector of Lagrange mul-
tipliers. The Lagrangian has to be minimized with respect
to wr and b and maximized with respect to �t � �. The
Kuhn-Tucker (KT) conditions [12] imply that:

rwr
L�wr�o� bo��o� � �� wr�o �

�

�
S��W

NX
t��

�t�oytct

	

	b
L�wr�o� bo��o� � ��

NX
t��

�t�oyt � �

yt �w
T
r�oct � bo�� � � � t � �� � � � � N (34)

�t�o � � t � �� � � � � N

�t�o fyt �w
T
r�oct � bo�� �g � � t � �� � � � � N�

From the conditions (34), one can see that the weighting
vector we search for is the linear combination of the match-
ing vectors having nonzero Lagrange multipliers �t. These
matching vectors are the support vectors [7]. Putting the ex-
pression for wr�o into the Lagrangian (33) and taking into
account the KT conditions, we obtain the Wolf dual func-
tional:

W��� �

NX
t��

�t �
�

	

NX
t��

NX
j��

�t�j ytyj
�
cTt S

��
W cj

�
 �z �
Htj

(35)

where Htj is the ij-th element of the Hessian matrix H.
The maximization of (35) in the non-negative quadrant of
�t, i.e.:

�t � � t � �� � � � � N (36)

under the constraint:

NX
t��

�tyt � � (37)

is equivalent to the optimization problem:

minimize
�

	
�
T
o H �o � �T �o subject to (36) and (37).

(38)
Having found the non-zero Lagrange multipliers �t�o, the
optimal separating hyperplane is given by:

g�c� � sgn

�
��

�

X
�t�o��

yt�t�o�c
T
t S

��
W c�� bo

�
A (39)

where bo � �
�w

T
r�o�cp � cq� for any pair of support vectors

cp and cq , such that yp � � and yq � ��. The weighted
distance measure is given by (5). The extension of the pro-
posed method to deal with matching errors that are not lin-
early separable as well as with nonlinear decision surfaces
can be done following similar approach [13].

5. EXPERIMENTAL RESULTS

The optimal coefficient vectors derived by the procedures
described in Sections 3 and 4 have been used to weigh the
raw matching vectors c that are provided by the morpho-
logical dynamic link architecture [3, 4], a variant of elas-
tic graph matching, applied to frontal face authentication.
Let us call the combination of the CLS/SVM weighting
approach and the morphological dynamic link architecture
weighted MDLA. The weighted DLA has been tested on
the database of the European research project Multi-Modal
Verification for Telecommunication Services (M2VTS) [9].
The database contains 37 persons’ video data, which in-
clude speech consisting of uttering digits and image se-
quences of rotated heads. Four recordings (i.e., shots) of
the 37 persons have been collected. In our experiments, the
sequences of rotated heads have been considered by using
only the luminance information at a resolution of 286� 350
pixels. From each image sequence, one frontal image has
been chosen based on symmetry considerations. Four ex-
perimental sessions have been implemented by employing
the “leave-one-out” principle. Each experimental session
consists of a training and a test procedure that are applied to
their training set and test set, respectively. To apply the pro-
posed methods additional client images are extracted from
the database in order to have a larger set of intra-class dis-
tances for each client class. Moreover, additional client im-
ages are extracted in order to prevent overfitting during the
training caused by the lack of data.

For comparison reasons we have also weighted the raw
matching vectors by the coefficient vector determined by
the standard SVM algorithm for pattern recognition (32).
By using the constrained least squares solution described in
Section 3, we achieved an EER of 8.2%. That is, a drop of
1% from the original MDLA. Further improvements (i.e.,
an EER equal to 6.4 %) were obtained when the coefficient
vector derived by the standard SVM was used to weigh the
raw matching vectors. The best authentication performance
was obtained when the proposed linear support vector ma-
chine that minimizes (33) was applied. In this case, we
achieved an EER of 5.6%.

In Table 1, a performance comparison between sev-
eral face authentication algorithms developed within the
M2VTS research project is reported. It is clearly seen
that the weighted MDLA algorithm attains the best perfor-
mance. It is worth mentioning that all methods were tested
on the same database according to the same protocol. The
ROC curves of MDLA for each weighting algorithm are de-
picted in Figure 1. In the same figure, the ROC curve for
the original MDLA is also plotted for comparison reasons.
We can see that the area under the ROC for the proposed



methods is much smaller than the initial one.

Table 1: Comparison of equal error rates for several authen-
tication techniques in the M2VTS database.

Authentication Technique EER (%)

MDLA with discriminating grids 5.6
MDLA 9.2

Gray level frontal face matching [14] 8.5
Discriminant GDLA [15] 6.0-9.2

GDLA [15] 10.8-14.4
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Figure 1: Receiver Operating Characteristics for MDLA for
several discriminatory power coefficients.

6. CONCLUSIONS

Novel methods for incorporating discriminant analysis into
the elastic graph matching algorithm have been proposed.
They are based on statistical learning theory. Starting from
Fisher’s discriminant ratio, a constrained least squares op-
timization problem was set up and solved. The constrained
least squares problem was further extended to a problem
that can solved by the construction of a Support Vector Ma-
chine. The experimental results indicated the success of the
proposed methods in frontal face authentication. Indeed, a
very low EER of 5.6% is obtained when the weighting coef-
ficients determined by the proposed SVM are used to weigh
the raw matching vectors computed by the morphological
dynamic link architecture. Further improvement is achieved
when polynomial decision surfaces are used to separate the
two classes leading to an EER of 2.4% [13].

7. REFERENCES

[1] R. Chellapa, C.L. Wilson, and S. Sirohey, “Human and
machine recognition of faces: A survey,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 705–740, May 1995.
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