Face Verification based on Morphological Shape Decomposition

A. Tefas

C. Kotropoulos

I. Pitas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki 540 06, GREECE
{tefas, costas,pitas}@zeus.csd.auth.gr

Abstract

Morphological shape decomposition is used to model a
facial image region as a sum of components and to extract
a feature vector at the nodes of a sparse grid overlaid over
the facial area in dynamic link matching. The feature vec-
tor is comprised of the greylevel values at this node in the
reconstructed images at several decomposition levels. This
feature vector is subsequently employed in Dynamic Link
Architecture to verify the identity of each person from a
training set. The experimental results indicate that the pro-
posed combination of morphological shape decomposition
and dynamic link matching practically offers the same ver-
ification capability to the standard dynamic link matching
with Gabor wavelets.

1. Introduction

It is well known that mathematical morphology is very
rich in providing means for the representation and analysis
of binary and grayscale images [5, 12]. The morphologi-
cal representation of images is well suited for the descrip-
tion of the geometrical properties of image objects. The
morphological skeleton and the morphological shape de-
composition are two popular approaches for morphologi-
cal shape representation. Morphological Shape Decompo-
sition (MSD) is the decomposition of an image object (in
our case of the facial region) into a union of simple compo-
nents by using morphological operations, i.e., the erosion
and the dilation. It has successfully been applied to the de-
composition of a binary shape into a union of simple binary
shapes, that is, the maximal inscribable disks [11]. A flexi-
ble search-based shape representation scheme that typically
gives more efficient representations than the morphological
skeleton and MSD is developed in [13].

The main aim of MSD is to extract an appropriate feature
vector that is used in a pattern matching algorithm, namely
the Dynamic Link Architecture (DLA) for face verification

[9]. A potential application of the proposed method is in
face modeling and subsequently in model-based retrieval of
a frontal facial image that corresponds to a specific person
from a video sequence that contains frontal facial images
of several persons. Another possible application of the pro-
posed method is as a recognition technique in teleshopping
applications. In the following, the state-of-the-art in face
recognition techniques is briefly outlined.

Two main categories for face recognition techniques can
be identified in the literature: those employing geometri-
cal features (for example [1]) and those using grey-level in-
formation (e.g. the eigenface approach [14]). A different
approach that uses both grey-level information and shape
information has been proposed in [9]. More specifically,
the response of a set of 2D Gabor filters tuned to different
orientations and scales is measured at the nodes of a sparse
grid overlaid on the face image of a person from a reference
set. The responses of Gabor filters form a feature vector at
each node of the grid. In the recall phase, the grid of each
person in the reference set is overlaid on the face image of
a test person and is deformed so that a criterion based both
on the feature vectors and the grid distortion (i.e., the ge-
ometry) is minimized. An implementation of DLA based
on Gabor wavelets is described in [4].

A novel dynamic link architecture that combines mor-
phological shape decomposition and elastic graph matching
is developed and tested for face verification. That is, we
propose the substitution of the responses of a set of Gabor
filters by the set of grey level values of the reconstructed im-
ages at the several levels of decomposition. There are sev-
eral reasons supporting this decision, namely: (1) The de-
composition of a complex object yields simple components
that conform with our intuition. In our case the component
is the maximal inscribable cylinder of unit height. In addi-
tion, the method is object-independent [12]. (2) It allows
arbitrary amounts of detail to be computed and also allows
the abstraction from detail [12]. (3) The representation is
unique. Moreover, it is information-preserving in contrast
to Morphological Dynamic Link Matching (MDLA) pro-



posed in [6]. (4) MSD employs grayscale erosions and di-
lations with a flat structuring function, namely, a cylinder
of unit height having a circular cross-section of radius 2.
Grayscale erosions and dilations with a flat structuring func-
tion can be computed very fast by using running min/max
selection algorithms [12].

The outline of the paper is as follows. Facial region mod-
eling using MSD is outlined in Section 2. The proposed
MSD-DLA is described in Section 3. The evaluation of per-
formance of MSD-DLA with respect to its Receiver Oper-
ating Characteristic (ROC) is treated in Section 4. Conclu-
sions are drawn and further research directions are indicated
in Section 5.

2. Facial region modeling using morphological
shape decomposition

The modeling of a grayscale facial image region by em-
ploying MSD is described in this section. To begin with let
us briefly describe a necessary preprocessing step that aims
at detecting facial regions in frontal views. A very attrac-
tive approach for face detection is based on multiresolution
images (also known as mosaic images). It attempts to de-
tect a facial region at a coarse resolution and subsequently
to validate the outcome by detecting facial features at the
next resolution level [15]. Towards this goal, the method
employs a hierarchical knowledge-based pattern recogni-
tion system. Recently, a variant of this method has been
proposed [7]. It offers the following features: (a) It allows
for rectangular cells in contrast to the square cells used in
[15]. (b) It is equipped with a preprocessing step that de-
termines an estimate of the cell dimensions and the offsets
so that the mosaic model fits the face image of each per-
son. (c) It has very low computational demands compared
to the original algorithm [15], because the iterative nature
of the algorithm is avoided due to the preprocessing step
that has been employed. (d) It employs more general rules
that are close to our intuition for a human face. However,
the above-described variant treats efficiently scenes where
a single person appears and the background is fairly uni-
form. By using this method, we may define roughly a re-
gion where the face is included, and control the placement
of a sparse grid over the face in order to store a model for
each person in dynamic link matching, as is described later
on.

MSD is applied to the output of the face detection algo-
rithm. Let us define by f(x) : D C Z? — Z the image at
the output of the preprocessing step employed with Z de-
noting the set of integer numbers and D being the domain
of f(x). Without any loss of generality it is assumed that
the image pixel values are non-negative, i.e., f(x) > 0. Let
g(x) = 1, Vx : ||x|| < R denote the structuring function.

The value R = 2 has been used in all experiments. It is
seen that by definition, g(x) is symmetric. Accordingly,
symmetric operators will not explicitly denoted hereafter.
Furthermore, it can easily be seen that our structuring func-
tion is a cylinder of unit height with a circular cross-section
of radius 2. Given f(x) and g(x), the grayscale dilation of
the image f(x) by the structuring function g(x) is defined
as [5, 12]:

(feg)(x)= {fx—2)+g(=)}. @

max
z€G, x—z€D

The complementary operation, the grayscale erosion, is de-
fined as:

(fog)(x) =, min

{fx+2)—g(=)}. @

The objective of shape decomposition is to decompose f(x)
into a sum of components, i.e.:

fx) = Z fi(x) 3)

where f;(x) denotes the i-th component that should be a
simple function. That is, it can be expressed as follows:

fi(x) = [l ® ni g] (x) @)
where [;(x) is the so called spine [12] and
nig(x)=[g®g®- - &gx) )
—_——
n; times

An intuitively sound choice for n; g(x) is the maximal func-
tion in f(x), that is, to choose n; such that

f O (m+1)g](x) <O VaeD. ©)
Accordingly, the first spine is given by:
h(x) = [f ©ng] (x). ™

Morphological shape decomposition can then be imple-
mented recursively as follows.

Step 1. Initialization: fo(x) = 0.

Step 2. i-th level of decomposition: Starting with
n; = 1 increment n; until

[(f — fir1) e (ni+ 1)9} (x) <0. (8)

Step 3. Calculate the i-th component by

fi(x) = [(f — fis1)en; g] oni g ¢ (x)

li(x)

©)



Step 4. Calculate the reconstructed image at the ¢-th
level of decomposition:

fi(x) = fi1(x) + fi(x). (10)

Step 5. Let M(f— f,) be a measure of the approxima-
tion of the image f(x) by its reconstruction f;(x)
at the ¢-th level of decomposition. Increment
and go to Step 2 until i > K or M(f — f;_1) is
sufficiently small.

Figure 1 shows the block diagram of the MSD. The module
Component Extraction (CE) implements the Steps 2 and 3
of the algorithm outlined above.

A .
fi + 4+ [ +4F f

Figure 1. Block diagram of MSD.

3. Combined use of Morphological Shape De-
composition and Dynamic Link Architec-
ture

Traditionally, linear methods like the Fourier transform,
the Walsh-Hadamard transform, Gaussian filter banks,
wavelets, Gabor elementary functions have dominated
thinking on algorithms for generating the information pyra-
mid. An alternative to linear techniques is to use mor-
phological shape decomposition techniques. In this paper,
we propose the substitution of Gabor-based feature vectors
used in dynamic link matching by feature vectors that are
extracted from the reconstructed images f,(x) at the last
K successive levels of decomposition ¢ = L — K, ..., L
where L denotes the maximal number of decomposition
levels. We have found that the value K = 15 gives good
results in practice. That is, the grey level information f, at
the node x of the sparse grid for the levels of decomposition
i = L—15,..., L along with the grey level information f is
concatenated to form the feature vector J(x), the so called
Jjet [9]:

() = (£6, fomre(), o) (D)

The resulted variant of DLA is the so called Morphological
Shape Decomposition-Dynamic Link Architecture (MSD-
DLA). Alternatively, one may also use the feature vector:

() = (160 = fo (), Fo w0, 0 fo () (12)

Figure 2 depicts a series of reconstructed images at nine-
teen levels of decompositions for the facial image region of
a sample person from the database. The 20th image at the
bottom right is the original facial image region that is de-
composed. Only the last fifteen reconstructed images have
been employed in the MSD-DLA.

Figure 2. Reconstructed images at the nineteen
levels of the decomposition. The image at the
bottom right is the original one.

Let the superscripts ¢ and 7 denote a test and a reference
person (or grid), respectively. The L, norm between the
feature vectors at the same grid node has been used as a
(signal) similarity measure, i.e.:

So(I(x), I(x7)) = [I(x;) = I(x)[.  (13)

3

As in DLA [9], the quality of a match is evaluated by taking
into account the grid deformation as well. Let us denote by
V the set of grid nodes. Then, an additional cost function is
used:

Se(ia .7) = Se(dt

odl) = [ld - dg|| Vie Vg e NG)

(14)
where N (i) denotes the neighborhood of a vertex ¢ (e.g.
a four-connected neighborhood in our case) and d;; =
X; — X; . It can easily be seen that (14) does not penal-
ize translations of the whole graph. The objective is to find

the test grid node coordinates {x!, ¢ € V} that minimize

C{xl}) = D {Su(I(xh),I(xD) +

%



+ A ) Se(dl,dy)} (15)
JEN ()

One may interpret (15) as a simulated annealing with an ad-
ditional penalty (i.e., a constraint on the objective function).
Since the cost function (14) does not penalize translations of
the whole graph. The random configuration x! can be of the
form of a random translation d of the (undeformed) refer-
ence grid node and a bounded local perturbation 4, i.e.:

xp=x{ +d+4; ; [[&] < (16)
where the choice of 4, controls the rigidity/plasticity of the
graph. Figure 3 depicts the grids formed in the procedure of
matching.

Figure 3. The graph matching procedure in
MSD-DLA: model grid, best grid for the test
person after translation and deformation of the
grid. Figures (a),(d): Reference person. Fig-
ures (b),(e): The test person is identical to the
reference one (Distance b-a=2776, Distance e-
d=1751). Figures (c),(f): The test person is
different from the reference one (Distance c-
a=6273, Distance f-d=5003).

4. Performance evaluation of MSD-DLA

The MSD-DLA has been tested on the M2VTS database
[10]. The database contains 37 persons’ video data, which

include speech consisting of uttering digits and image se-
quences or rotated heads. Four recordings (i.e., shots) of
the 37 persons have been collected. Let BP, BS, CC,
..., XM be the identity codes of the persons included in
the database. In our experiments, the sequences of rotated
heads have been considered by using only the luminance in-
formation at a resolution of 286 x 350 pixels. From each
image sequence, one frontal image has been chosen based
on symmetry considerations. Four experimental sessions
have been implemented by employing the “leave one out”
principle. Each experimental session consists of a training
and a test procedure that are applied to their training set and
test set, respectively.

First let us describe the training procedure. The training
set is built of 3 (4 are available) shots of 36 (37 are available)
persons. This amounts to 3 x 36 = 108 images. By using
these images (i.e., the samples for each trained class) one
may compute: (i) 6 distance measures for all pairwise com-
binations between the different samples in the same class,
and, (ii) another 6 distance measures for each pairwise com-
bination between the samples of any two different classes.
In all pairwise combinations samples that originate from
different shots are taken into consideration. In other words,
6 intra-class distance measures and 210 inter-class distance
measures are computed for each of the 36 trained classes.
Morphological Shape Decomposition - Dynamic Link Ar-
chitecture has been used to yield all the distance measures
required.

Having computed all the 216 distance measures for each
trained class, the objective in the training procedure is to
determine a threshold on the distance measures that should
ideally enable the distinction between the test samples that
belong to the trained class under study, and the test sam-
ples that belong to any other class. For example, by leav-
ing out shot 01 and person BP, the following 35 thresh-
olds are determined: Tpg(01, BP), Tcc(01,BP), ...,
Txwm (01, BP). The threshold Tgs(01, BP) is used to dis-
criminate samples of person BS that originate from shots
02, 03, and 04 against all the samples of the remaining 35
classes which originate from any of the above-mentioned
shots, when the samples of person BP from these shots are
not considered at all. The thresholds have been computed
as follows. The minimum intra-class distance and the mini-
mum inter-class distance (i.e., impostor distance) have been
found. The vector of 36 minimum distances is ordered in
ascending order according to their magnitude. Let D ;y de-
note the minimum impostor distance for BS when shot 01
is left out and person BP is excluded. The threshold is cho-
sen as follows:

Tps(01,BP) = D1q), Q@=0,1,2,.... a7
In the test procedure, three shots create the training set while
the fourth one has been used as a test set. Each person of



the test set has been considered in turn as an impostor while
the 36 others have been used as clients. Each client tries
to access under its own identity while the impostor tries to
access under the identity of each of the 36 clients in turn.
This is tantamount to 36 authentic tests and 36 imposture
tests. By repeating the procedure four times, 4 X 37 x 36 =
5328 authentic and imposture tests have been realized in
total.

In each authentic or imposture test, the reference grids
derived for each class during the training procedure are
matched and adapted to the feature vectors computed at ev-
ery pixel of the image of a test person that can be either a
client or an impostor using MSD-DLA. Then, the distance
measure resulted is compared against the threshold having
been computed during the training. Again, we have used
the minimum intra-class/inter-class distance in the compar-
isons, i.e.,

D(BPOl,{BS}) = min{D(BPOl,BS()z),
D(BPoy, BSos), (18)
D(BPy;,BS04)}

where the first ordinate in distance computations denotes an
image of the test person and the second ordinate denotes a
reference grid for a trained class.

For a particular choice of parameter (), a collection of
thresholds is determined that defines an operating state of
the test procedure. For such an operating state, a false ac-
ceptance rate (FAR) and a false rejection rate (FRR) can be
computed. By varying the parameter () several operating
states result. Accordingly, we may create plots of FRR ver-
sus FAR with a varying operating state as an implicit set
of parameters or equivalently by using the scalar @ as a
varying parameter. These plots are the Receiver Operating
Characteristics (ROCs) of the verification technique. The
ROC for each training set is plotted separately in Figure 4a.
The corresponding curve for the entire experiment is shown
in Figure 4b. The Equal Error Rate (EER) of MSD-DLA
(i.e., the operating state of the method when FAR equals
FRR) is another common figure of merit used in the compar-
ison of verification techniques. The EER of MSD-DLA is
found to be 11.89 %. Table 1 summarizes the FRR achieved
for FAR = 10% for each shot left out. It is seen that due to
the variations in the appearance of the persons included in
the database and the recording conditions (e.g. illumination
changes) that occur in the four shots the performance of the
method is not constant. However, Table 1 suggests that a
compensation of illumination conditions as well as the use
of linear discriminant analysis may improve further the ver-
ification efficiency of the method. Another argument that
supports such an expectation is that by incorporating local
discriminants in the standard DLA an EER of ~ 7.4% has
been reported in [2].

Table 1. False rejection rates achieved for a
false acceptance rate ~ 10 % when each shot
in turn is left out.

Shot left out | FAR (%) | FRR (%)
1 11.33 7.50
2 10.73 18.92
3 10.06 8.11
4 10.58 18.09

Table 2. Comparison of the Verification tech-
niques Equal Error Rates.

Verification Technique | EER (%)
MSD-DLA 11.89
GDLA 10.8-14.4

Table 2 compares the EER achieved by MSD-DLA to the
same figure of Gabor-based DLA [3]. It can be seen that the
proposed combination of morphological shape decomposi-
tion and dynamic link matching practically offers the same
verification capability to the standard dynamic link match-
ing with Gabor wavelets.

5. Conclusions

A novel morphological dynamic link architecture that
employs morphological shape decomposition as feature ex-
traction mechanism has been developed and has been tested.
The experimental results collected are very encouraging. A
compensation of illumination conditions as well as the use
of linear discriminant analysis may improve further the ver-
ification efficiency of the method. Recently, by weighting
the signal similarity measure (13) at each grid node with an
appropriately derived coefficient that quantifies the discrim-
inatory power of the the grid node we achieved an EER of
6.58% following the same experimental setup [8].
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