
CHAOTIC WATERMARK SEQUENCES FOR CORRELATION-BASED SCHEMES

Anastasios Tefas Nikos Nikolaidis Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki 54124, GREECE

{tefas,nikolaid,pitas }@zeus.csd.auth.gr

ABSTRACT

In this paper, an overview of watermarking schemes based on
chaotic generators and correlation detection is presented. Statis-
tical properties of watermark sequences generated by piecewise-
linear Markov maps are exploited for both additive and multiplica-
tive watermark embedding. Correlation/spectral properties of such
sequences are easily controllable, a fact that reflects on the water-
marking system performance. A family of chaotic maps, namely the
skew tent map family, is used in temporal and transform-domain
watermarking schemes. The chaotic watermarking framework is
applied successfully to audio signals, demonstrating its superiority
with respect to both robustness and inaudibility.

1. INTRODUCTION

The design of robust techniques for copyright protection and con-
tent verification of multimedia data became an urgent necessity in
the last years. This demand has been lately addressed by the emer-
gence of a variety of watermarking methods. Such methods tar-
get towards hiding in the original data an imperceptible and unde-
tectable signal which conveys information about the host medium
(owner or authorized user, transaction or product ID, etc). For a
review of existing schemes and a detailed discussion on the main
requirements of a watermarking scheme, the interested reader may
consult [1].

So far, many approaches have attempted to statistically analyze
the performance of watermarking schemes in terms of detection re-
liability by addressing the problem in a communication framework
(see for example [2, 3, 4]). In these papers, the statistical proper-
ties of watermarking schemes based on pseudorandom watermark
signals and correlation detectors were derived, among others. In
[3], the authors investigate the performance of white and lowpass-
filtered pseudorandom watermarks concluding that the former are
ideal when no distortions are inflicted on the image, whereas the
latter provide additional robustness against lowpass distortions.

Watermarking techniques based on chaotic systems appeared in
the literature already in the first years of watermarking research [5].
An overview of early chaotic watermarking techniques can be found
in [6]. In this paper, an overview of watermarking schemes based on
chaotic generators and correlation detection is presented. Statistical
properties of watermark sequences generated by piecewise-linear
Markov maps are exploited for both additive and multiplicative wa-
termark embedding. The major advantage of chaotic sequences is
their easily controllable spectral/correlation properties, a fact that
makes them a good alternative to the widely used pseudorandom
signals [7, 8]. Chaotic watermarks can be either embedded in the
temporal/spatial domain or in a transform domain where their cor-
rlation/spectral properties can be exploited more efficiently for ob-
taining robust watermarking schemes. Such a transform-domain au-
dio watermarking technique is presented in this paper. The scheme
involves multiplicative embedding of high-frequency chaotic wa-
termarks in the low frequencies of the Discrete Fourier Transform
(DFT). The corresponding watermarking scheme guarantees robust-
ness against lowpass attacks, along with enhancement of the detec-
tor reliability. The complete theoretical justification and statistical
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analysis of correlation-based additive and multiplicative schemes
employing chaotic watermarks can be found in [8, 9].

2. WATERMARKING SYSTEM MODEL

Within a watermarking system, the watermark generation func-
tional block aims at constructing a sequencew, w[i] ∈ R, of N
samples using an appropriate generation functionG, w = G(K,N),
whereK denotes the watermark key. Watermark embedding aims
at inserting the watermark signalw in the host signalf in a way
that ensures imperceptibility and robustness under intentional or
unintentional attacks. For the model under study, either additive
watermark embeddingfw = f + pw, or multiplicative embedding
fw(n) = f (n) + p w(n) | f (n)| is considered, wherefw is the wa-
termarked signal andp is a constant that controls the watermark
embedding power, which will be called hereafter watermark em-
bedding factor. Obviously,p is closely related to the watermark
perceptibility. In the following, we will describe the basic formu-
lation of correlation-based detection for additive watermarks. The
corresponding equations for multiplicatively embedded watermarks
are straightforward to derive [9] and only the peculiarities that arise
in this case will be presented.

Watermark detection can be formulated as a binary hypothesis
test, the two hypotheses being the following:
• H0: The test signalft contains the watermarkwd, i.e., ft = fo +

pwd, fo being the host signal.
• H1: The test signalft does not contain the watermarkwd.

The two events mentioned above can be summarized in the follow-
ing formula:

ft = fo + pwe (1)

where the watermarkwd is indeed embedded in the signal ifp 6= 0
and we = wd (eventH0), and it is not embedded in the signal if
p = 0 (no watermark is present, denoted hereafter as eventH1a) or
we 6= wd (wrong watermark presence, denoted hereafter as event
H1b).

The correlation between the signal under investigationft and
the watermarkwd is given by:

c =
1
N

N−1

∑
n=0

ft [n]wd[n] =
1
N

N−1

∑
n=0

( fo[n]wd[n]+ pwe[n]wd[n]) (2)

In order to decide on the valid hypothesis,c is compared against a
suitably selected thresholdT. For a given threshold, the system per-
formance can be measured in terms of the probability of false alarm
Pf a(T), (i.e., the probability to detect a watermark in a signal that
is not watermarked or is watermarked with a different watermark)
and the probability of false rejectionPf r (T) (i.e., the probability
to erroneously neglect the watermark existence in the signal). The
plot of Pf a versusPf r is called thereceiver operating characteris-
tics (ROC) curve of the corresponding watermarking system. This
curve conveys all the necessary system performance information.

For the watermark sequences that will be studied in this paper,
i.e., the sequences generated by piecewise linear Markov maps, the
correlation outputc is normally distributed (see Section 3). Thus,
its distribution can be fully determined in terms of its meanµc|H0

,



µc|H1
, and varianceσ2

c|H0
, σ2

c|H1
, which can be derived in a straight-

forward manner:

µc = E[c] =
1
N

N−1

∑
n=0

E[ fo[n]]E[wd[n]]+
1
N

N−1

∑
n=0

pE[we[n]wd[n]] (3)

σ2
c = E[c2]−E[c]2 =

1
N2

[
N−1

∑
n=0

(
E[ f 2

o [n]]E[w2
d[n]]+

p2E[w2
d[n]w2

e[n]]+2pE[ fo[n]]E[we[n]w2
d[n]]

)
+

N−1

∑
n=0

N−1

∑
m=0,m6=n

(E[ fo[n] fo[m]]E[wd[n]wd[m]]+ (4)

pE[ fo[n]]E[wd[n]we[m]wd[m]]+
pE[ fo[m]]E[we[n]wd[m]wd[n]]+

p2E[we[n]we[m]wd[n]wd[m]]
)]
−µ2

c

By examining (3), (4), one can easily conclude that several higher
order moments (statistics) need to be evaluated ifµc,σ2

c are to be
computed. To proceed in such an evaluation, an assumption about
the statistical properties of the host signal has to be adopted. In our
case, the host signal will be assumed to be wide-sense stationary,
obeying a first order exponential autocorrelation function model [4]:

Rfo[k] = µ2
fo +σ2

foβ k, k≥ 0, |β | ≤ 1 (5)

whereβ is the parameter of the autocorrelation function andσ2
fo

is
the host signal variance.

In the preceding analysis we studied the system model for ad-
ditive watermark embedding in the temporal domain. In the case
where watermark embedding takes place in a transform domain
(e.g., DFT) the watermark is usually embedded in specific coeffi-
cients and the embedding rule is multiplicative instead of additive.
As an example, a multiplicative audio watermarking system will be
described [9]. Multiplicative embedding is employed in this case for
exploiting masking properties of the human auditory system (HAS).
Moreover, watermark embedding to a specific frequency band pro-
vides increased performance and inaudibility [9]. We considerx and
X to be the source signal and its DFT coefficients, correspondingly.
Watermark embedding is performed by modifying the magnitude
F = |X| of the DFT coefficients of a specific band. The correspond-
ing watermark sequence can be described by the following formula:

W(n) =





Wo(i), if aNs≤ n≤ bNs,0≤ i < N−1
W′

o(i), if (1−b)Ns≤ n≤ (1−a)Ns,
0≤ i < N−1,

0, otherwise
(6)

wheren = 0,1, . . . ,Ns− 1 and coefficientsa,b (0 < a < b≤ 0.5)
control the frequency terms that will be modified. The watermark
signalWo that is used for the construction ofW consists ofN sam-
ples, whereN = d(b−a)Nse, and it is generated as described pre-
viously. Wo affects a specific low frequency subband of the host
signal, around coefficient0, according to a multiplicative superpo-
sition rule:

F
′
(n) = F(n)+ pW(n)F(n) (7)

whereF
′

is the watermarked audio signal andp is a constant that
controls the watermark embedding power. Due to the symmetry
of the DFT magnitude, a reflected version of the signalW′

o(i) =
Wo(N− i−1) is also embedded in the low frequency components
around coefficientNs−1. Correlation detection is also utilized in
this case to examine whether a test audio signalFt , described by
equation (7), contains a watermarkWt or not:

c =
1
N

N−1

∑
n=0

(F(n)Wt(n)+ pW(n)F(n)Wt(n)) (8)

In order to reach a decision about the signal being watermarked or
not,c is compared against a suitably selected thresholdT.

3. EMPLOYING CHAOTIC SEQUENCES IN
WATERMARKING SCHEMES

Sequences generated by chaotic maps constitute an efficient alterna-
tive to pseudorandom watermarking sequences. A chaotic discrete-
time signalx[n] can be generated by a chaotic system with a single
state variable by applying the recursion:

x[n] = f (x[n−1]) = f n(x[0]) = f ( f (. . .( f︸ ︷︷ ︸
n times

(x[0])) . . .)) (9)

where f (·) is a nonlinear transformation that maps scalars to scalars
andx[0] is the system initial condition. The notationf n(x[0]) is used
to denote then-th application of the map.

Let pn(·) denote the probability density function of then-th it-
eratex[n]. A linear operatorPf can be defined such that:

pn(·) = Pf {pn−1(·)}= Pn
f {p0(·)} (10)

This operator, which is referred to as the Frobenius-Perron (FP) op-
erator [10], describes the time evolution of the densitypn(·) for a
particular map. Although, in general, the densities at distinct iter-
atesn will differ, there can be certain choices ofp0(·) such that the
densities of subsequent iterates do not change, i.e.,

p(·) = Pn
f {p(·)}, ∀n (11)

Such a densityp(·), is referred to as theinvariant densityof the map
f (·), and constitutes a fixed point of the FP operator. The invariant
density plays an important role in the computation of time-averaged
statistics of time series from nonlinear dynamics.

A rich class of 1-D chaotic systems that are particularly
amenable to analysis are the eventually expanding, piecewise-linear
Markov maps. The statistics of Markov maps can be determined in
closed form. For a detailed definition of the matrices (i.e., FP ma-
trix and basis correlation matrix) and vectors involved in statistics
calculations, one may consult [11], where, a strategy for comput-
ing these statistics, was developed. By using the FP matrix, the
higher order correlation statistics of Markov maps can be derived.
To do so, the FP matrix and the basis correlation matrix must be ex-
panded in a sufficient dimension [11]. For example, for calculating
the autocorrelation function of a chaotic sequence, the FP matrix
P1 and the corresponding basis correlation matrix are needed. Ac-
cording to (3) and (4) the highest order correlation statistic required
for evaluating the mean value and the variance of the detector in
the temporal-domain watermarking system is of third order and the
corresponding FP matrix that need to be evaluated isP3.

From the preceding discussion one can conclude that a chaotic
sequencex is fully described by the mapf (·) and the initial condi-
tion x[0]. By imposing certain constraints on the map or the initial
condition, sequences of infinite period can be obtained. Thus, if we
consider two finite sequencesx,y generated by the iterative appli-
cation of the same map on two distinct initial conditionsx[0],y[0],
respectively, that belong to the same chaotic orbit, there will be an
integerk > 0 such that:

x[0] = f k(y[0]) or y[0] = f k(x[0]) (12)

The corresponding samplesx[n],y[n] are associated through the fol-
lowing expression for a suitably selectedk > 0 (sequence shift):

y[n] = f n(y[0]) = f n( f k(x[0])) = x[n+k] or x[n] = y[n+k] (13)

Having described how a chaotic sequencex can be generated in
the interval[0,1], the corresponding chaotic watermark sequence is
given by:

w = x−d1 (14)



whered is a constant that controls the range of the watermark se-
quence, and1 is the unit vector. By substituting (14) in (3) and
(4) and considering thatwd[n] = we[n+ k], according to (13), it is
straightforward to derive the mean value and the variance of the cor-
relationc. The constant valued is usually chosen to be the mean
value of the chaotic sequencex in order to have a DC free water-
mark which, according to [4], results in better system performance.
Moreover, by subtracting the test signal mean value prior to detec-
tion, we can decrease the variance of the correlation, thus obtaining
better system performance.

Although samples of Markov chaotic watermarks are correlated
for smallk > 0, since they posses exponential autocorrelation func-
tion andwd is a shifted version ofwe, the Central Limit Theorem for
random variables with small dependency [12] may be used in order
to establish that the correlationc in eq. (2) attains a Gaussian dis-
tribution, even in the case of wrong watermark presence (assuming
thatN is sufficiently large).

4. THE SKEW TENT MAP

In this section, analysis techniques presented so far are being exem-
plified using theskew tentmap which is a piecewise linear Markov
map. The skew tent map can be expressed as:

T : [0,1]→ [0,1] (15)

T (x) =
{ 1

α x , 0≤ x≤ α
1

α−1 x+ 1
1−α , α < x≤ 1

, α ∈ (0,1)

A trajectory t[k] of the dynamical system is obtained by iterating
this map i.e.,

t[k] = T (t[k−1]) = T k(t[0]) (16)

The invariant density of the skew tent map is uniform. Follow-
ing the methodology described in [11], the statistical properties of
sequences produced using the skew tent map can be derived. The
analytical expressions for the first, second and third order correla-
tion statistics required for evaluating the performance of watermark-
ing schemes based on the skew tent map can be evaluated using the
Frobenius-Perron operator approach [11]. The power spectral den-
sity of the skew tent map sequences can be shown to be:

St(ω) =
1−e2

2

12(1+e2
2−2e2cosω)

(17)

wheree2 = 2α−1 is an eigenvalue of the corresponding Frobenius-
Perron matrix. Thus, by varying the parameterα either highpass
(α < 0.5), or lowpass (α > 0.5) sequences can be produced. For
α = 0.5 the symmetric tent map is obtained. Sequences generated
by the symmetric tent map posses white spectrum, since the auto-
correlation function becomes the Dirac delta function. The control
over the spectral properties is very useful in watermarking applica-
tions, since the spectral characteristics of the watermark sequence
are directly related to watermark robustness against common types
of attacks, such as filtering and compression.

5. EXPERIMENTAL RESULTS AND DISCUSSION

Various experiments were conducted to demonstrate the efficiency
of the chaotic watermarking sequences when employed in an au-
dio watermarking scheme either additively or multiplicatively. For
this purpose, music audio signals sampled at 44.1 KHz with 16 bits
per sample, were utilized. All sets of experiments were performed
by employing chaotic watermark signals generated by the skew tent
map, using a total number of 10000 keys. The system detection per-
formance was measured in terms of the ROC curves (plots ofPf a
versusPf r ) under the worst case assumption forPf a evaluation cor-
responding to the signal being watermarked by a watermark, differ-
ent than the one used in detection (eventH1b). A watermark embed-
ding factorp that resulted in watermarked signals with SNR=30dB

has been used in all cases of the additive embedding in the tem-
poral domain. In the experiments with multiplicative embedding a
panel of listeners was asked to listen all watermarked sequences for
choosing watermarks that are just below the audibility threshold,
ensuring a fair comparison.
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Figure 1: Receiver Operating Characteristics for watermarking
schemes based on highpass, lowpass and white skew tent chaotic
watermarks.

The ROC curves for lowpass (α = 0.7), white (α = 0.5) and
highpass (α = 0.3) skew tent chaotic watermarks embedded addi-
tively in the temporal domain were theoretically and experimentally
evaluated. The superior performance of the highpass tent chaotic
watermarks can be easily observed in Figure 1. The performance of
the watermarking system is considerably inferior for white tent wa-
termarks whereas the worst performance is observed when lowpass
watermarks are used. However, it is obvious that in case of lowpass
attacks, such as filtering or compression, the lowpass watermark
will be more robust. In order to take advantage of the superior cor-
relation properties of highpass watermarks even in the case of low-
pass attacks one can perform embedding in another domain and not
in the spatial one. Moreover, if a highpass watermark is embedded
in the low frequencies of the DFT domain, the watermark becomes
robust to lowpass attacks while retaining its correlation properties.
To achieve this, a multiplicative embedding scheme similar to the
one described in Section 2 can be utilized. A large number of ex-
periments were devoted to investigate the robustness of this water-
marking scheme against lowpass attacks. In order to compare the
performance of the resulting audio watermarking scheme against
the performance of alternative techniques, experiments were con-
ducted for two competitive watermark embedding schemes. A cor-
relation detector (applied in the appropriate domain) was used in all
three schemes.

The first alternative embedding scheme involved white pseu-
dorandom watermark sequences (w(i) ∈ {−1,1}) multiplicatively
embedded in the same low frequency subband (a = 0.01, b = 0.11)
of the DFT domain, producing watermarked signals with SNR=23
db. The second scheme was based on the time-domain audio water-
marking technique presented in [13]: a bipolar white pseudorandom
watermarkw(n) (w(n) ∈ {−1,1}) was modulated according to the
amplitude of the original audio samplesm(n) using a multiplicative
law:

w′(n) = p |m(n) | w(n) (18)

wherep denotes the embedding strength. In the next stagew′(n)
was shaped using a lowpass Hamming filter with cut-off frequency
of 2205 Hz, in order to improve imperceptibility and robustness to
lowpass attacks. The resulting filtered watermark signalw′′(n) was
embedded in the time domain of the original signalm(n):

mw(n) = m(n)+w′′(n) (19)
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Filtered random in time, MPEG 64 kbps

Figure 2: ROC curves for the three watermarking schemes (tent and
white watermarks in the DFT domain and prefiltered watermarks in
the time-domain) after MPEG compression at 64 kbps.

thus, producing the watermarked signalmw(n) (SNR=22 db). Wa-
termarks generated using the previously described procedure will
be called hereafter “time-domain pseudorandom watermarks”.

The superior performance of highpass tent watermarks embed-
ded over the low DFT frequencies, against the alternative techniques
described above in the case of MPEG-I layer III encoding at 64 kbps
is illustrated in Figure 2. Further experiments have shown that the
proposed watermarking scheme outperforms the other two schemes
when mean and median filtering, with window of length 3 and 5,
as well as other attacks, such as subsampling and cropping of the
audio signal, are applied prior to detection [9].
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Figure 3: Equal error rate of watermarking schemes based on skew
tent maps versus the number of watermarked data samples.

Another important aspect that can be studied by exploiting the
theoretical analysis presented in the previous Sections, is the min-
imum number of watermarked data samples required for a water-
marking scheme based on correlation detection in order to achieve
a certain performance. This number can be estimated by setting the
desiredPf a andPf r values and using (3), (4). The Equal Error Rate
(EER) i.e., the operating state wherePf r = Pf a versus the number
of watermarked data samples is plotted in Figure 3 for two systems
based on tent chaotic watermarks and on additive embedding in the
temporal domain. It can be observed that the number of samples
required, for a reliable watermarking scheme (e.g. EER≈ 10−12),

is 80000 for a highpass spectrum watermark and this number in-
creases to 190000 samples for a white watermark. For a lowpass
tent watermark the minimum number is much larger.

6. CONCLUSIONS
In this paper, a review on chaotic watermarks generated by Markov
maps and their watermarking related statistical properties is pre-
sented. Highpass chaotic watermarks prove to perform better than
white ones whereas lowpass watermarks have the worst perfor-
mance when no distortion is inflicted on the watermarked signal.
Chaotic watermarks attaining high-frequency spectrum were em-
bedded in the lowest frequency subband of the DFT domain, obey-
ing a multiplicative rule. The statistical properties of the correlation
detector were also studied. The proposed technique guaranteed en-
hancement of the system detection reliability, imperceptibility and
great robustness to various attacks.
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