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ABSTRACT

In this paper, a novel method for enhancing the performance of
elastic graph matching in face authentication is proposed. Our ob-
jective is to weigh the local matching errors at the nodes of an elas-
tic graph according to their discriminatory power. We propose a
novel approach to discriminant analysis that re-formulates Fisher’s
Linear Discriminant ratio to a quadratic optimization problem
subject to inequality constraints by combining statistical pattern
recognition and support vector machines. The method is applied
to frontal face authentication on the M2VTS database.

1. INTRODUCTION

Many face recognition techniques have been developed for more
than two decades whose principles span several disciplines, such
as image processing, pattern recognition, computer vision and neu-
ral networks [1]. The increasing interest in face recognition is
mainly driven by application demands, such as nonintrusive veri-
fication for credit cards and automatic teller machine transactions,
nonintrusive access-control to buildings, identification for law en-
forcement, etc.

A well-known approach to face recognition and authentication
is the so-called dynamic link architecture (DLA), a general object
recognition technique, that represents an object by projecting its
image onto a rectangular elastic grid where a Gabor wavelet bank
response is measured at each node [2]. Recently, a variant of dy-
namic link architecture based on multiscale dilation-erosion, the
so-called morphological dynamic link architecture (MDLA), has
been proposed and tested for face authentication [3].

This paper addresses the derivation of optimal coefficients that
weigh the local matching errors determined by the elastic graph
matching procedure at each grid node. We propose to weigh the
local matching errors by a novel approach that combines statisti-
cal pattern recognition (i.e., discriminant analysis) [4] and Support
Vector Machines [5]. Our approach re-formulates Fisher’s Linear
Discriminant ratio to a quadratic optimization problem subject to
inequality constraints. Linear and nonlinear Support Vector Ma-
chines are then constructed to yield the optimal separating hyper-
planes.

2. PROBLEM STATEMENT

A widely known face recognition algorithm is the elastic graph
matching [2]. The method is based on the analysis of a facial image
region and its representation by a set of M local descriptors (i.e.,
a feature vector) extracted at the nodes of a sparse grid:

ix) = (fu(x), ..., fu(x)) (1)

where fl (x) denotes the output of a local operator applied to image
f at the i-th scale or at the ¢-th pair of scale and orientation and x
defines the pixel coordinates. The grid nodes are either distributed
evenly over a rectangular image region or they are placed on cer-
tain facial features (e.g., nose, eyes, etc.) called fiducial points. In
both cases, a face/facial feature detection algorithm is needed.

Let the superscripts ¢ and r denote a test and a reference per-
son (or grid), respectively. The L2 norm between the feature vec-
tors at the [-th grid node is used as a (signal) similarity measure,
ie., Co(G(x1),3(x)) = [I§(x}) = j(x7)||. The objective in elas-
tic graph matching is to find the set of test grid node coordinates
{x!, I € V} that minimizes the cost function:

D(t,r) =Y Co(§(x0),i(xP))
ley
subjectto x{ = x| +s~+ 87, [|01]] < Gmax ?2)

where s denotes a global translation of the graph, d; is a local
perturbation and 4, controls the rigidity/plasticity of the graph.

Let ¢; € IR” be a column vector comprised by the matching
errors between a test person ¢ and a reference person r at all grid
nodes, i.e.:

ct = . 3)
Cu(3(xL),d(x1))

where L is the cardinality of V. Hereafter, c; is referred as the
matching vector between the test person ¢ and the reference per-
son r. Using matrix notation, (2) is rewritten as D(t,r) = 17¢;
where 1 is an L x 1 vector of ones. That is, the classical
elastic graph matching treats uniformly all local matching errors
Co(j(x}),j(x])). We would like to weigh the local matching er-
rors, i.e., to compute a weighted distance measure:

D'(t,r) = wfct 4

where w, is an appropriate vector of weights. Let us denote by
S, the class of matching vectors that belong to the reference per-
son. Let also S denote the set of matching errors of the training
set. Throughout the paper we study a two-class problem, namely,
to separate efficiently all matching vectors that are attributed to a
client (i.e., the reference person r) from the matching vectors that
belong to anybody else (i.e., the class of ¢; € (S — S,), which
constitutes the set of impostors for client 7). The most known cri-
terion is to choose w, so that the ratio of the trace of the between-
class scatter matrix over the trace of the within-class scatter matrix
of the transformed matching vectors is maximized. Since, in our



case, the transformed matching vector is merely the scalar w c;,
the optimization criterion is simplified to the ratio of between-class
and within-class variance, i.e.:

T
w,. Spw,
J(w,) = ————. 5
(w) wlSww, ©)
This is the so-called Fisher’s discriminant ratio. It can easily be
verified that the criterion:

minimize wf Sww, (6)

subject to wf(ml —mg) > 1T(m1 —mc) ()
has an interpretation that agrees with that of Fisher’s linear dis-
criminant ratio (5). Indeed, (6) minimizes the within-class vari-
ance, while the constraint inequality (7) has the following interpre-
tation: The difference between the class centers (i.e., the average
distance measure over client claims E{D'(t,r) | c; € S, } and the
average distance measure over impostor claims E{D’(¢,r) | c; €
(8§ — &r)}) is not reduced after linear weighting. In the follow-
ing, we shall elaborate the criterion (6) and (7). More specifically,
we shall impose more than one inequality constraints demanding
that the distance measures D’ (¢, r) related to impostor claims to
be linearly separable from the distance measures D’ (¢, r) related
to client claims on the training set.

3. SUPPORT VECTOR MACHINE SOLUTION

Support Vector Machines (SVMs) is a state-of-the-art pattern
recognition technique whose foundations are stemming from sta-
tistical learning theory [5]. SVM is a learning machine capable
of implementing a set of functions that approximate best the su-
pervisor’s response with an expected risk bounded by the sum of
the empirical risk and the Vapnik-Chervonenkis (VC) confidence,
a bound on the generalization ability of the learning machine, that
depends on the so-called VC dimension of the set of functions im-
plemented by the machine. Motivated by the fact that SVM train-
ing algorithm consists of a quadratic programming problem, we
reformulate the criterion of minimizing the within-class variance,
which appears in Fisher’s linear discriminant ratio, so that it can
be solved by constructing the optimal separating hyperplane (lin-
ear SVM).

3.1. The Separable Case

Suppose the training data:

(c1,91),-..,(cn,yn), cr € R, ®)
_ 1 ifere(S—S8r)
Y= -1 ifcie S
can be separated by a hyperplane:
Gun () =Wy ¢ —b=0 ©)
with the property:
ye(wici—b)—1>0 t=1,...,N (10)

where b is a bias term. Let us define the distance v(w,,b; c¢) of a
matching vector ¢; from the hyperplane (9) as:

|wlc,—b]| |wlci—b]|
05 = = - 11
v(w ct) Wrllsw WISww,)/? (11)

where the norm of the coefficient vector w, is measured with re-
spect to the within-scatter matrix Sy. In our case, the optimal
hyperplane is given by maximizing the margin:

)= mi b 12
o(w) cter(%lilsr)v(w ct) + (12)
+ min v(w b'c)—;

CtESy mH e (WISww,)1/2’

Equivalently, the optimal hyperplane separates the data so that the
within-class variance is minimized. The optimization is subject to
the constraint functions (10). For completeness, we mention that
the standard SVM would solve the problem [5]:
minimize Jsvm(w,) = wl w, subject to (10). (13)
The solution of the optimization problem under study is given
by the saddle point of the Lagrangian:

N
L(w,,b,a) = wfswwr - Z at{yt(wfct —b)—1} (14

t=1

where a = (a1, ..., an)T is the vector of Lagrange multipliers.
The Lagrangian has to be minimized with respect to w, and b
and maximized with respect to a; > 0. The Kuhn-Tucker (KT)
conditions [6] imply that:

N
1.
Vwr L(Wr0,b0,00) =0 & W, o = §SW1 Zat,oytct
t=1
a N
e L(wy,0,b0, 0to) —0<:>Zatoyt—0
t=1
Yt (WroCt—bo) —1>0 t=1,...,N 15)

ao>0 t=1,...,N

o {ye (wZ:oct—bo) —-1}=0 t=1,...,N.

From the conditions (15), one can see that the weighting vector,
we search for, is the linear combination of the matching vectors
having nonzero Lagrange multipliers a;. These matching vectors
are the support vectors [5]. Putting the expression for w, , into
the Lagrangian (14) and taking into account the KT conditions, we
obtain the Wolf dual functional:

N
= Zat - i Z Zataﬂ yey; (e Sw'ej)  (16)
t=1 t=1 j=1

H;;

where H;; is the ij-th element of the Hessian matrix H. The
maximization of (16) in the non-negative quadrant of a, i.e.:

>0 t=1,....N (17)

under the constraint:

N
> oy =0 (18)
t=1

is equivalent to the optimization problem:

minimize iaT Ha-1Ta subject to (17) and (18). (19)



Having found the non-zero Lagrange multipliers a o, the optimal
separating hyperplane is given by:

1 _
gle)=sen | 5 D maro(eiSy'e)=bo | Q0)
at o>0
where b, = %w;‘r o(cp + c4) for any pair of support vectors c,
and cg4, such that y, = 1 and y, = —1. The weighted distance
measure is given by (4).

3.2. The Non-Separable Case

When the matching errors are not linearly separable, we would
like to relax the constraints (10) by introducing non-negative slack
variables &, ¢t = 1,..., N [5], such that:

wlie, >b+1—§& ify, =1 @D
wlic, <b—1+& ify, = —1 (22)
& >0, t=1,...,N. (23)

The above constraints can be given in a compact notation as:
yi(wici—b)+&—-1>0 t=1,...,N. (24)

The so-called generalized optimal hyperplane is determined by the
vector w, , that minimizes the functional:

N
J(wr,b,8) = wiSww, + QD _&)7, a>0 (25

t=1

where @ is a given value, that defines the cost of constraint vio-
lations, subject to & > 0 t = 1,...,N. The larger the )
is, the higher penalty to the errors is assigned. The minimization
of (25) subject to (24) is a convex programming problem for any
integer 0. For ¢ = 1,2, it is a quadratic programming problem.
Moreover, the choice o = 1 has the advantage that neither &; nor
their Lagrange multipliers appear in the Wolfe dual problem [7].
The Lagrangian of the optimization problem is given by:

L(wbya,p) =wiSww, +Q¥ L & — L, ki
— Eszl (6773 {yt(Wth — b) —+ é_t — 1}(26)
where u; are Lagrange multipliers enforcing the positivity of &;.

The KT conditions for the primal Lagrangian (26) are the follow-
ing:

N
Toot
VWrL(wT,07b07a07£oap’o) =0& Wro = ESW Zat,oytct
t=1

0

N
%L(wr,o,bo,ao,.ﬁo,uo) =0& ;atyt =0

vsL(WT,Oaboaamgo:Il‘o) =0& to + Uto = Q
Ye(Wroct —bo) + 6o —1>0 t=1,...,N 27
Qo>0 t=1,...,N
£&o>0 t=1,...,N
/jlt,oZO tzl,,N

T
o {yr(Whoei —b) +&o—1} =0 t=1,...,N
lfzt,ogt,ozo t:].,,N

To find the coefficients of the generalized optimal hyperplane w, ,
in (27) one has to find the Lagrange multipliers o, t = 1,..., N
that maximize the Wolfe dual problem

N N

N
W(a)zzat_i Y wa;yyi (eSw'e;) (29
t=1

t=1 j=1
H,j

N
subject to Zatyt =0 and 0<a <Q. 29)

t=1

By comparing (28)-(29) and (19) reveals that the objective func-
tion (28) and the equality constraint (29) remain unchanged, while
the Lagrange multipliers are now upper-bounded by (). As in the
separable case, only some of the Lagrange multipliers a; are non-
zero. These multipliers are used to determine the support vectors.
Having determined the support vectors, w,. , is determined by the
first equation in (27) and the weighted distance measure is com-
puted by (4). The equations derived for the optimal separating
hyperplane and the bias term in the separable case are valid for the
non-separable case as well.

4. NONLINEAR SUPPORT VECTOR MACHINES

Thus far, we have described the case of linear decision surfaces.
By examining the training procedure (28)-(29), one may notice
that the matching vectors ¢ appear in quadratic forms czﬂS;V1 cj.
The just described quadratic form can be expressed by an inner
product of the form (S;Vl/z(:t)T(S;VI/QC]‘), because Sy, is a pos-
itive definite matrix. To allow for a more complex decision surface,
the rotated matching vectors S;VU Zei t = 1,..., N are nonlin-
early transformed into a high-dimensional feature space by a map
to a Hilbert space, ® : IR +— 7, and then linear separation is
done in the Hilbert space H. Hilbert space is any linear space,
with an inner product defined that is also complete with respect to
the corresponding norm (i.e., any Cauchy sequence of points con-
verges to a point to the space) [7]. It is obvious that the training
procedure in ‘H would depend only on inner products of the form
< <I>(S;V1/20t), @(S;VI/QCJ-) >. If the inner product in space H
had an equivalent kernel in the input space IR”, i.e.:

< B(SyPer), ®(Sy 7)) >= K(S5 %, 85/ %¢;) (30)

the inner product would not need to be evaluated in the feature
space, thus avoiding the curse of dimensionality problem. In order
(30) to hold, the kernel function has to be a positive definite func-
tion that satisfies Mercer’s condition [5]. The polynomial kernel
(ctTS;V1 cj + l)p for p = 4 was used in the experiments reported
in the next section.

Nonlinear SVMs yield a higher computational cost than linear
SVMs during the test phase. Indeed, in nonlinear SVMs the dis-
tance between the reference person r and the test person 7 is given
by:

Ns
1 _1 _1
D(r,r) = 3 E oy K (Sy2 ce, Syp” er ), 31
t=1

where IN; denotes the number of support vectors extracted in the
training phase, instead of the much simpler distance computed by
the linear SVM which can be simplified to (4). In the latter case,
the inner product between the optimal weighting vector, found in
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Figure 1: Receiver Operating Characteristics of MDLA for several
discriminatory power coefficients.

the training phase, and the test matching vector suffices. This is
not the case in (31), where a sum of N, terms has to be computed.
Thus, the test phase of nonlinear SVMs is Ny times slower than
that of the linear SVMs.

5. EXPERIMENTAL RESULTS

The optimal coefficient vectors derived by the procedures de-
scribed in Sections 3 and 4 have been used to weigh the raw match-
ing vectors c that are provided by the morphological dynamic link
architecture [3], a variant of elastic graph matching, applied to
frontal face authentication. Let us denote by weighted MDLA
the combination of the SVM weighting approach and the morpho-
logical dynamic link architecture. The weighted MDLA has been
tested on the M2VTS database. This database contains 37 persons’
video data, which include speech consisting of uttering digits and
image sequences of rotated heads. Four recordings (i.e., shots) of
the 37 persons have been collected. Four experimental sessions
have been implemented by employing the “leave-one-out” princi-
ple [8]. To apply the proposed methods additional client images
are extracted from the database in order to create a large enough
set of intra-class distances for each client class. Moreover, addi-
tional client images are extracted in order to prevent overfitting
during the training caused by the lack of data.

For comparison reasons we have also weighted the raw match-
ing vectors by the coefficient vector determined by the standard
SVM algorithm for pattern recognition (13), for both linear and
nonlinear separating hyperplanes. By using the coefficient vec-
tor derived by the standard SVM to weigh the raw matching vec-
tors an EER equal to 6.4% were obtained. The performance of
MDLA was considerably improved by reaching an EER equal to
5.6% when the proposed linear support vector machine that min-
imizes (14) was applied. The classic nonlinear SVMs resulted an
EER equal to 4.5%. The best authentication performance was ob-
tained when the proposed nonlinear SVMs were used reaching an
EER of 2.4%. Furthermore, the minimum and the maximum num-
ber of support vectors found considering all persons in the training
sets that are constructed according to the experimental protocol is
given in Table 1 for the standard and the proposed SVMs. It is
obvious that the number of SV does not change significantly by
using the proposed methods. In any case the number of support
vectors is between 10% and 20% of the trained vectors.

The Receiver Operating Characteristics (ROC) curves of
MDLA for several algorithms are depicted in Figure 1. In the same
Figure, the ROC curve for the original MDLA is also plotted for

Table 1: Number of support vectors found.

SVM method Number of support vectors
Minimum |  Maximum
standard SVMs 35 43
proposed SVMs 34 40
standard nonlinear SVMs 40 50
proposed nonlinear SVMs 41 51

Table 2: Comparison of equal error rates for several authentication

techniques in the M2VTS database.
| Authentication Technique | EER (%) |
MDLA with discriminating grids 2.4-5.6
MDLA 9.2
Gray level frontal face matching [9] 8.5
Discriminant GDLA [10] 6.0-9.2
GDLA [10] 10.8-14.4

comparison reasons. We can see that the area under the ROC for
the proposed methods is much smaller than the initial one. In Ta-
ble 2, a performance comparison is reported between several face
authentication algorithms tested on the same database according
to the same protocol. It is clearly seen that the weighted MDLA
algorithm attains the best performance.
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