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ABSTRACT

In this paper, a novel method for enhancing the perfor-
mance of elastic graph matching in face authentication is
proposed. The starting point is to weigh the local match-
ing errors at the nodes of an elastic graph according to
their discriminatory power. We propose a novel approach
to discriminant analysis that re-formulates Fisher’s Linear
Discriminant ratio to a quadratic optimization problem sub-
ject to inequality constraints by combining statistical pat-
tern recognition and support vector machines. The method
is applied to frontal face authentication on the M2VTS
database.

1. INTRODUCTION

Automated face recognition has exhibited a tremendous
growth for more than two decades. Many techniques for
face recognition have been developed whose principles span
several disciplines, such as image processing, pattern recog-
nition, computer vision and neural networks [1]. The in-
creasing interest in face recognition is mainly driven by ap-
plication demands, such as nonintrusive identification and
verification for credit cards and automatic teller machine
transactions, nonintrusive access-control to buildings, iden-
tification for law enforcement, etc.

A well-known approach to face recognition and authen-
tication is the so-called dynamic link architecture (DLA),
a general object recognition technique, that represents an
object by projecting its image onto a rectangular elastic
grid where a Gabor wavelet bank response is measured at
each node [2]. Recently, a variant of dynamic link archi-
tecture based on multiscale dilation-erosion, the so-called
morphological dynamic link architecture (MDLA), was pro-
posed and tested for face authentication [3].

This paper addresses the derivation of optimal coeffi-
cients that weigh the local matching errors determined at
each grid node by the elastic graph matching procedure. We
propose to weigh the local matching errors at the grid nodes
by a novel approach that combines statistical pattern recog-
nition (i.e., discriminant analysis) [4] and Support Vector
Machines [5]. Our approach re-formulates Fisher’s Linear
Discriminant ratio to a quadratic optimization problem sub-
ject to inequality constraints. Linear Support Vector Ma-
chines are then constructed to yield the optimal separating
hyperplanes.

2. PROBLEM STATEMENT

A widely known face recognition algorithm is the elastic
graph matching [2]. The method is based on the analysis of
a facial image region and its representation by a set of local
descriptors extracted at the nodes of a sparse grid (i.e., a
feature vector):
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where fi(x) denotes the output of a local operator applied
to image f at the i-th scale or at the i-th pair (scale, ori-
entation), x defines the pixel coordinates and M is feature
vector dimensionality. The grid nodes are either evenly dis-
tributed over a rectangular image region or they are placed
on certain facial features (e.g., nose, eyes, etc.) called fidu-
cial points. In both cases a face/facial feature detection
algorithm is needed.

Let the superscripts ¢t and r denote a test and a reference
person (or grid), respectively. The L, norm between the
feature vectors at the I-th grid node is used as a (signal)
similarity measure, i.c., Cy((x1),j(x7)) = i(x}) — §(x})]I
The objective in elastic graph matching is to find the set of
test grid node coordinates {x!, I € V} that minimizes the
cost function:

D(t,r) =Y Co(§(x0),i(x]))
l1ev
subject to x{ = %] +s+0;, ||| < Smax (2)

where s denotes a global translation of the graph, §; is a
local perturbation and dma.. controls the rigidity/plasticity
of the graph.

Let ¢¢ € IR” be a column vector comprised by the match-
ing errors between a test person ¢ and a reference person r
at all grid nodes, i.e.:

Co(§(x1),3(x1))
Co(i(x5),i(x3))

ct = : (3)
Co(3(x1),§(x1))

where L is the cardinality of V. Hereafter, c; is referred
as the matching vector between the test person ¢ and the
reference person r. Using matrix notation, (2) is rewritten
as

D(t,r) =1"¢;, (4)



where 1 is an L x 1 vector of ones. That is, the classical
elastic graph matching treats uniformly all local matching
errors C,(j(x}),j(x])). We would like to weigh the local
matching errors, i.e., to compute a weighted distance mea-
sure:

D'(t,r) = wles (5)

where w, is an appropriate vector of coefficients. Let us
denote by S, the class of matching vectors that belong to
the reference person. Let also S denote the set of matching
errors of the training set. Throughout the paper we study a
two-class problem, namely, to separate efficiently all match-
ing vectors that are attributed to a client (i.e., the reference
person r) from the matching vectors that belong to anybody
else (i.e., the class of ¢; € (§ — S,), which constitutes the
set of impostors for client r).

3. CONSTRAINED LEAST SQUARES
OPTIMIZATION

Let mc and m; denote the class sample mean of the match-
ing vectors c; that correspond to client claims, and of those
that correspond to impostor claims related to the reference
person r, respectively. Let also Nc and N; be the corre-
sponding numbers of matching vectors that belong to these
two classes. Obviously, the total number of matching vec-
tors IV is equal to Ng + N7. Let Sw and Sp be within-class
and between-class scatter matrices, respectively.

Let us suppose that we would like to linearly transform
the matching vector (e.g., to apply (5)). Four feature selec-
tion criteria are studied in detail in [4]. The most known
criterion is to choose w, so that the ratio of the trace of
the between-class scatter matrix and the trace of the within-
class scatter matrix of the transformed matching vectors is
maximized. Since, in our case, the transformed matching
vector is merely the scalar w’ c;, the optimization criterion
is simplified to the ratio of between-class and within-class
variances, i.e.:

W;I.‘S BW,

J(w,) = (6)

This is the so-called Fisher’s discriminant ratio. The coef-
ficient vector w,, that maximizes (6) is given by:

wlSww,

W0 =Sy’ (m; — mc) (7)

and yields Fisher’s linear discriminant wZ:Oct. It is straight-
forward to prove that the minimization of:

J'(w:) = w, (Sw +S5)w; (8)
subject to the equality constraint:
wlSpw, = =const, (>0 (9)
yields the coefficient vector:
w, =k Sy (m; — me) (10)

where k is a proporptionality constant given by:
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It is seen that the coefficient vector given by (10), which is
optimal with respect to the criterion (8)-(9), is still in the
direction of the coefficient vector that minimizes Fisher’s
discriminant ratio. The nice property of the optimality cri-
terion (8) is that it rewrites Fisher’s discriminant ratio as
a quadratic optimization criterion subject to an equality
constraint (e.g., a constraint least-squares (CLS) criterion),
thus enabling the use of Lagrange multipliers which is a
more straightforward optimization procedure than the so-
lution of a generalized eigenvalue problem. However, the
equality constraint (9) seems to be too restrictive. We shall
modify the objective and the constraint functions as follows:

minimize er Sww, (12)

subject to w! (mr —mc) > 17 (m; — me). (13)
The new criterion minimizes the within-class variance,
while the difference between the class centers (i.e., the aver-
age distance measure over client claims E{D’(t,r) | c; € S}
and the average distance measure over impostor claims
E{D'(t,r) | ¢t € (8§ — &-)}) is not reduced after linear
weighting. Therefore, the interpretation of (12)-(13) agrees
with that of FLD ratio. It is straightforward to show that
the inequality constraint (13) can be rewritten as

N
T T _ ) =Ny, ct €8,
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t=1

(14)
The inequality constraint (14) can be combined with the
quadratic objective function (12) to yield a linearly con-
strained least squares problem that can be solved by con-
strained quadratic optimization methods [6]. The La-
grangian function to be minimized is:

N
Ly(Wr, ) = w, Sww, — aZkt(wZ‘ -1y (15)
t=1

where « is the Lagrange multiplier. The stationary point
(Wr,0, @) of (15) can be easily calculated by maximizing
the Wolfe dual objective function. The latter function is
maximized for a, given by:

_ 2 Zivzl ktlTCt
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provided that the denominator in (16) is positive. The
numerator in (16) is always non-negative by construction
(i.e., the average distance measure over client claims is al-
ways less than the average distance measure over impos-
tor claims). The optimal coefficient vector for the criterion
(12,14) is given by:

(16)

Qo

N
1
Wpo = answl Z kecy. (17)
t=1

It is obvious that, except for the scaling factor %ao, the
direction of w,, given by (17) coincides with that of (7),
which maximizes Fisher’s discriminant ratio, as well as with
that of (10), which maximizes the objective criterion (8) and

9).



4. SUPPORT VECTOR MACHINE
FORMULATION

Support Vector Machines (SVMs) is a state-of-the-art pat-
tern recognition technique whose foundations are stemming
from statistical learning theory [5]. SVM is a learning ma-
chine capable of implementing a set of functions that ap-
proximate best the supervisor’s response with an expected
risk bounded by the sum of the empirical risk and the
Vapnik-Chervonenkis (VC) confidence, a bound on the gen-
eralization ability of the learning machine, that depends
on the so-called VC dimension of the set of functions im-
plemented by the machine. Motivated by the fact that
SVM training algorithm consists of a quadratic program-
ming problem, we shall reformulate the criterion of min-
imizing the within-class variance so that it can be solved
by constructing the optimal separating hyperplane (linear
SVM).
Suppose the training data:

(cl7y1)a"')(cN7yN)7 Ct ERL7 (18)
_ 1 if Ct € (8 — 87-)
Yo = —1 if Ct € 87-
can be separated by a hyperplane:
gwop(ct) =wr ci—b=0 (19)
with the property:
Gwnp(ce) >1 ify, =1
Gw,p(ce) < —1 ifyy = —1 (20)

where b is a bias term. In compact notation, the set of
inequalities (20) can be rewritten as:

yi(wyce—b)—1>0 t=1,...,N. (21)

Let us define the distance v(wy,b;c;) of a matching vector
c¢ from the hyperplane (19) as:

| wlc,—b |
TSww,)1/2

|w?ct—b|_

[wellsw (W

v(Wy, b;ct) = (22)
where the norm of the coefficient vector w, is measured
with respect to the within-scatter matrix Sy . In our case,
the optimal hyperplane is given by maximizing the margin:

rb) = i vy b; 23
olwrt) = _ min_ o(w,biei) + (23)
+ min v(w b'c)—;

cres. ryU,Ct) — (W;I-‘SWWT)I/2.

Equivalently, the optimal hyperplane separates the data so
that the within-class variance, i.e., the objective function
(12), is minimized. The optimization is subject to the con-
straint functions (21). By comparing (13) with (21), we ob-
serve that more than one inequality constraints are now im-
posed that demand the distance measures D’ (¢, r) related to
impostor claims to be linearly separable from the distance
measures D’ (t,r) related to client claims on the training
set. For completeness, we mention that the standard SVM
would solve the problem [5]:

minimize Jsvm(w.) = wl w, subject to (21). (24)

The solution of the optimization problem under study is
given by the saddle point of the Lagrangian:

N
L(wr,ba) = w, Sww, — Y ai{ye(w; ¢, —b) — 1} (25)

t=1

where a = (a1,...,an)7 is the vector of Lagrange multi-
pliers. The Lagrangian has to be minimized with respect
to w, and b and maximized with respect to a; > 0. The
Kuhn-Tucker (KT) conditions [6] imply that:

N
1.
VW’V‘L(WT,O) bo, ao) =0 Wro = ESWI Z At,0lYtCt

t=1
5 N
3% (Wro,bo,ao)—0¢>zatoyt—0
t=1
ye (Wroct —bo) —1>0 t=1,...,N (26)

o>0 t=1,...,N

o {Ye (wZ:Oct—bo) —-1}=0 t=1,...,N.

From the conditions (26), one can see that the weighting
vector we search for is the linear combination of the match-
ing vectors having nonzero Lagrange multipliers . These
matching vectors are the support vectors [5]. Putting the
expression for w, , into the Lagrangian (25) and taking into
account the KT conditions, we obtain the Wolf dual func-
tional:

N N
Z Z Qi YeYj Ct SW c]) (27)

H;;j

.Jkl»—‘

N
t=1

where Hy; is the ij-th element of the Hessian matrix H.
The maximization of (27) in the non-negative quadrant of
g, i.e.:

>0 t=1,...,N (28)

under the constraint:

N
Zatyt = 0 (29)
t=1

is equivalent to the optimization problem:
o 1 .
minimize Zaf H a, — 17 a, subject to (28) and (29).

(30)
Having found the non-zero Lagrange multipliers oy, the
optimal separating hyperplane is given by:

Z yraro(ci Sy e) — bo (31)

Ott 0>0

g(c) =sgn

where b, = 2w/ (¢, + ¢4) for any pair of support vectors

cp and cg, such that y, = 1 and y, = —1. The weighted
distance measure is given by (5). The extension of the pro-
posed method to deal with matching errors that are not lin-
early separable as well as with nonlinear decision surfaces
can be done following a similar approach [7].



5. EXPERIMENTAL RESULTS

The optimal coefficient vectors derived by the procedures
described in Sections 3 and 4 have been used to weigh the
raw matching vectors c that are provided by the morpho-
logical dynamic link architecture [3], a variant of elastic
graph matching, applied to frontal face authentication. Let
us call the combination of the CLS/SVM weighting ap-
proach and the morphological dynamic link architecture
weighted MDLA. The weighted MDLA has been tested on
the database of the European research project Multi-Modal
Verification for Telecommunication Services (M2VTS). The
database contains 37 persons’ video data, which include
speech consisting of uttering digits and image sequences of
rotated heads. Four recordings (i.e., shots) of the 37 per-
sons have been collected. Four experimental sessions have
been implemented by employing the “leave-one-out” princi-
ple. Each experimental session consists of a training and a
test procedure that are applied to their training set and test
set, respectively. To apply the proposed methods additional
client images are extracted from the database in order to
have a larger set of intra-class distances for each client class.
Moreover, additional client images are extracted in order to
prevent overfitting during the training caused by the lack
of data.

Receiver Operating Characteristics for MDLA using several node weighting methods
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Figure 1: Receiver Operating Characteristics for MDLA for
several discriminatory power coefficients.

For comparison reasons we have also weighted the raw
matching vectors by the coefficient vector determined by
the standard SVM algorithm for pattern recognition (24).
By using the constrained least squares solution described in
Section 3, we achieved an Equal Error Rate (EER) of 8.2%.
That is, a drop of 1% from the original MDLA. Further
improvements (i.e., an EER equal to 6.4 %) were obtained
when the coefficient vector derived by the standard SVM
was used to weigh the raw matching vectors. The best au-
thentication performance was obtained when the proposed
linear support vector machine that minimizes (25) was ap-
plied. In this case, we achieved an EER of 5.6%.

In Table 1, a performance comparison between sev-
eral face authentication algorithms developed within the
M2VTS research project is reported. It is clearly seen
that the weighted MDLA algorithm attains the best per-

formance. It is worth mentioning that all methods were
tested on the same database according to the same proto-
col. The Receiver Operating Characteristics (ROC) curves
of MDLA for each weighting algorithm are depicted in Fig-
ure 1. In the same Figure, the ROC curve for the original
MDLA is also plotted for comparison reasons. We can see
that the area under the ROC for the proposed methods is
much smaller than the initial one.

Table 1: Comparison of equal error rates for several authen-
tication techniques in the M2VTS database.

I Authentication Technique | EER (%) ||
MDLA with discriminating grids 5.6
MDLA 9.2
Gray level frontal face matching [8] 8.5
Discriminant GDLA [9] 6.0-9.2
GDLA [9] 108144

6. CONCLUSIONS

Novel methods for incorporating discriminant analysis into
the elastic graph matching algorithm have been proposed.
They are based on statistical learning theory. Starting from
Fisher’s discriminant ratio, a constrained least squares op-
timization problem was set up and solved. The constrained
least squares problem was further extended to a problem
that can solved by the construction of a Support Vector
Machine.
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