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ABSTRACT

In this paper� a novel method for enhancing the perfor�
mance of elastic graph matching in face authentication is
proposed� The starting point is to weigh the local match�
ing errors at the nodes of an elastic graph according to
their discriminatory power� We propose a novel approach
to discriminant analysis that re�formulates Fisher�s Linear
Discriminant ratio to a quadratic optimization problem sub�
ject to inequality constraints by combining statistical pat�
tern recognition and support vector machines� The method
is applied to frontal face authentication on the M�VTS
database�

�� INTRODUCTION

Automated face recognition has exhibited a tremendous
growth for more than two decades� Many techniques for
face recognition have been developed whose principles span
several disciplines� such as image processing� pattern recog�
nition� computer vision and neural networks ��	� The in�
creasing interest in face recognition is mainly driven by ap�
plication demands� such as nonintrusive identi
cation and
veri
cation for credit cards and automatic teller machine
transactions� nonintrusive access�control to buildings� iden�
ti
cation for law enforcement� etc�

A well�known approach to face recognition and authen�
tication is the so�called dynamic link architecture �DLA��
a general object recognition technique� that represents an
object by projecting its image onto a rectangular elastic
grid where a Gabor wavelet bank response is measured at
each node ��	� Recently� a variant of dynamic link archi�
tecture based on multiscale dilation�erosion� the so�called
morphological dynamic link architecture �MDLA�� was pro�
posed and tested for face authentication �
	�

This paper addresses the derivation of optimal coe��
cients that weigh the local matching errors determined at
each grid node by the elastic graph matching procedure� We
propose to weigh the local matching errors at the grid nodes
by a novel approach that combines statistical pattern recog�
nition �i�e�� discriminant analysis� ��	 and Support Vector
Machines ��	� Our approach re�formulates Fisher�s Linear
Discriminant ratio to a quadratic optimization problem sub�
ject to inequality constraints� Linear Support Vector Ma�
chines are then constructed to yield the optimal separating
hyperplanes�

�� PROBLEM STATEMENT

A widely known face recognition algorithm is the elastic
graph matching ��	� The method is based on the analysis of
a facial image region and its representation by a set of local
descriptors extracted at the nodes of a sparse grid �i�e�� a
feature vector��

j�x� �
�
�f��x�� � � � � �fM �x�
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where �fi�x� denotes the output of a local operator applied
to image f at the i�th scale or at the i�th pair �scale� ori�
entation�� x de
nes the pixel coordinates and M is feature
vector dimensionality� The grid nodes are either evenly dis�
tributed over a rectangular image region or they are placed
on certain facial features �e�g�� nose� eyes� etc�� called 
du�
cial points� In both cases a face�facial feature detection
algorithm is needed�

Let the superscripts t and r denote a test and a reference
person �or grid�� respectively� The L� norm between the
feature vectors at the l�th grid node is used as a �signal�
similarity measure� i�e�� Cv�j�x
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The objective in elastic graph matching is to 
nd the set of
test grid node coordinates fxtl � l � Vg that minimizes the
cost function�
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where s denotes a global translation of the graph� �l is a
local perturbation and �max controls the rigidity�plasticity
of the graph�

Let ct � IRL be a column vector comprised by the match�
ing errors between a test person t and a reference person r
at all grid nodes� i�e��
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where L is the cardinality of V� Hereafter� ct is referred
as the matching vector between the test person t and the
reference person r� Using matrix notation� ��� is rewritten
as

D�t� r� � �
T
ct� ���



where � is an L � � vector of ones� That is� the classical
elastic graph matching treats uniformly all local matching
errors Cv�j�x

t
l�� j�x

r
l ��� We would like to weigh the local

matching errors� i�e�� to compute a weighted distance mea�
sure�

D
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where wr is an appropriate vector of coe�cients� Let us
denote by Sr the class of matching vectors that belong to
the reference person� Let also S denote the set of matching
errors of the training set� Throughout the paper we study a
two�class problem� namely� to separate e�ciently all match�
ing vectors that are attributed to a client �i�e�� the reference
person r� from the matching vectors that belong to anybody
else �i�e�� the class of ct � �S � Sr�� which constitutes the
set of impostors for client r��

�� CONSTRAINED LEAST SQUARES

OPTIMIZATION

Let �mC and �mI denote the class sample mean of the match�
ing vectors ct that correspond to client claims� and of those
that correspond to impostor claims related to the reference
person r� respectively� Let also NC and NI be the corre�
sponding numbers of matching vectors that belong to these
two classes� Obviously� the total number of matching vec�
tors N is equal to NC�NI � Let SW and SB be within�class
and between�class scatter matrices� respectively�

Let us suppose that we would like to linearly transform
the matching vector �e�g�� to apply ����� Four feature selec�
tion criteria are studied in detail in ��	� The most known
criterion is to choose wr so that the ratio of the trace of
the between�class scatter matrix and the trace of the within�
class scatter matrix of the transformed matching vectors is
maximized� Since� in our case� the transformed matching
vector is merely the scalar wT

r ct� the optimization criterion
is simpli
ed to the ratio of between�class and within�class
variances� i�e��

J�wr� �
wT
r SBwr
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� ���

This is the so�called Fisher�s discriminant ratio� The coef�

cient vector wr�o that maximizes ��� is given by�

wr�o � S
��
W �mI �mC� ���

and yields Fisher�s linear discriminantwT
r�oct� It is straight�

forward to prove that the minimization of�
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subject to the equality constraint�
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yields the coe�cient vector�
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where � is a proporptionality constant given by�
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It is seen that the coe�cient vector given by ����� which is
optimal with respect to the criterion �������� is still in the
direction of the coe�cient vector that minimizes Fisher�s
discriminant ratio� The nice property of the optimality cri�
terion ��� is that it rewrites Fisher�s discriminant ratio as
a quadratic optimization criterion subject to an equality
constraint �e�g�� a constraint least�squares �CLS� criterion��
thus enabling the use of Lagrange multipliers which is a
more straightforward optimization procedure than the so�
lution of a generalized eigenvalue problem� However� the
equality constraint ��� seems to be too restrictive� We shall
modify the objective and the constraint functions as follows�

minimize w
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The new criterion minimizes the within�class variance�
while the di�erence between the class centers �i�e�� the aver�
age distance measure over client claims EfD��t� r� j ct � Srg
and the average distance measure over impostor claims
EfD��t� r� j ct � �S � Sr�g� is not reduced after linear
weighting� Therefore� the interpretation of �������
� agrees
with that of FLD ratio� It is straightforward to show that
the inequality constraint ��
� can be rewritten as
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The inequality constraint ���� can be combined with the
quadratic objective function ���� to yield a linearly con�
strained least squares problem that can be solved by con�
strained quadratic optimization methods ��	� The La�
grangian function to be minimized is�
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where � is the Lagrange multiplier� The stationary point
�wr�o� �o� of ���� can be easily calculated by maximizing
the Wolfe dual objective function� The latter function is
maximized for �o given by�
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provided that the denominator in ���� is positive� The
numerator in ���� is always non�negative by construction
�i�e�� the average distance measure over client claims is al�
ways less than the average distance measure over impos�
tor claims�� The optimal coe�cient vector for the criterion
������� is given by�

wr�o �
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It is obvious that� except for the scaling factor �
�
�o� the

direction of wr�o given by ���� coincides with that of ����
which maximizes Fisher�s discriminant ratio� as well as with
that of ����� which maximizes the objective criterion ��� and
����



�� SUPPORT VECTOR MACHINE

FORMULATION

Support Vector Machines �SVMs� is a state�of�the�art pat�
tern recognition technique whose foundations are stemming
from statistical learning theory ��	� SVM is a learning ma�
chine capable of implementing a set of functions that ap�
proximate best the supervisor�s response with an expected
risk bounded by the sum of the empirical risk and the
Vapnik�Chervonenkis �VC� con
dence� a bound on the gen�
eralization ability of the learning machine� that depends
on the so�called VC dimension of the set of functions im�
plemented by the machine� Motivated by the fact that
SVM training algorithm consists of a quadratic program�
ming problem� we shall reformulate the criterion of min�
imizing the within�class variance so that it can be solved
by constructing the optimal separating hyperplane �linear
SVM��

Suppose the training data�

�c�� y��� � � � � �cN � yN �� ct � IR
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can be separated by a hyperplane�

gwr�b�ct� � w
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with the property�
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where b is a bias term� In compact notation� the set of
inequalities ���� can be rewritten as�

yt�w
T
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Let us de
ne the distance v�wr� b� ct� of a matching vector
ct from the hyperplane ���� as�
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where the norm of the coe�cient vector wr is measured
with respect to the within�scatter matrix SW � In our case�
the optimal hyperplane is given by maximizing the margin�

	�wr� b� � min
ct��S�Sr�

v�wr� b� ct� � ��
�

� min
ct�Sr

v�wr� b� ct� �
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�wT
r SWwr����

�

Equivalently� the optimal hyperplane separates the data so
that the within�class variance� i�e�� the objective function
����� is minimized� The optimization is subject to the con�
straint functions ����� By comparing ��
� with ����� we ob�
serve that more than one inequality constraints are now im�
posed that demand the distance measuresD��t� r� related to
impostor claims to be linearly separable from the distance
measures D��t� r� related to client claims on the training
set� For completeness� we mention that the standard SVM
would solve the problem ��	�

minimize JSVM�wr� � wT
r wr subject to ����� ����

The solution of the optimization problem under study is
given by the saddle point of the Lagrangian�

L�wr� b��� � w
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where � � ���� � � � � �N �T is the vector of Lagrange multi�
pliers� The Lagrangian has to be minimized with respect
to wr and b and maximized with respect to �t � �� The
Kuhn�Tucker �KT� conditions ��	 imply that�
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From the conditions ����� one can see that the weighting
vector we search for is the linear combination of the match�
ing vectors having nonzero Lagrange multipliers �t� These
matching vectors are the support vectors ��	� Putting the
expression for wr�o into the Lagrangian ���� and taking into
account the KT conditions� we obtain the Wolf dual func�
tional�
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where Htj is the ij�th element of the Hessian matrix H�
The maximization of ���� in the non�negative quadrant of
�t� i�e��

�t � � t � �� � � � � N ����

under the constraint�

NX
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is equivalent to the optimization problem�
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�
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T
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T
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Having found the non�zero Lagrange multipliers �t�o� the
optimal separating hyperplane is given by�

g�c� � sgn
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where bo � �
�
wT
r�o�cp � cq� for any pair of support vectors

cp and cq � such that yp � � and yq � ��� The weighted
distance measure is given by ���� The extension of the pro�
posed method to deal with matching errors that are not lin�
early separable as well as with nonlinear decision surfaces
can be done following a similar approach ��	�



�� EXPERIMENTAL RESULTS

The optimal coe�cient vectors derived by the procedures
described in Sections 
 and � have been used to weigh the
raw matching vectors c that are provided by the morpho�
logical dynamic link architecture �
	� a variant of elastic
graph matching� applied to frontal face authentication� Let
us call the combination of the CLS�SVM weighting ap�
proach and the morphological dynamic link architecture
weighted MDLA� The weighted MDLA has been tested on
the database of the European research project Multi�Modal
Veri�cation for Telecommunication Services �M�VTS�� The
database contains 
� persons� video data� which include
speech consisting of uttering digits and image sequences of
rotated heads� Four recordings �i�e�� shots� of the 
� per�
sons have been collected� Four experimental sessions have
been implemented by employing the �leave�one�out� princi�
ple� Each experimental session consists of a training and a
test procedure that are applied to their training set and test
set� respectively� To apply the proposed methods additional
client images are extracted from the database in order to
have a larger set of intra�class distances for each client class�
Moreover� additional client images are extracted in order to
prevent over
tting during the training caused by the lack
of data�
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For comparison reasons we have also weighted the raw
matching vectors by the coe�cient vector determined by
the standard SVM algorithm for pattern recognition �����
By using the constrained least squares solution described in
Section 
� we achieved an Equal Error Rate �EER� of �����
That is� a drop of �� from the original MDLA� Further
improvements �i�e�� an EER equal to ��� �� were obtained
when the coe�cient vector derived by the standard SVM
was used to weigh the raw matching vectors� The best au�
thentication performance was obtained when the proposed
linear support vector machine that minimizes ���� was ap�
plied� In this case� we achieved an EER of �����

In Table �� a performance comparison between sev�
eral face authentication algorithms developed within the
M�VTS research project is reported� It is clearly seen
that the weighted MDLA algorithm attains the best per�

formance� It is worth mentioning that all methods were
tested on the same database according to the same proto�
col� The Receiver Operating Characteristics �ROC� curves
of MDLA for each weighting algorithm are depicted in Fig�
ure �� In the same Figure� the ROC curve for the original
MDLA is also plotted for comparison reasons� We can see
that the area under the ROC for the proposed methods is
much smaller than the initial one�

Table �� Comparison of equal error rates for several authen�
tication techniques in the M�VTS database�

Authentication Technique EER ���

MDLA with discriminating grids ��	

MDLA ���
Gray level frontal face matching ��	 ���

Discriminant GDLA ��	 �������
GDLA ��	 ���������

	� CONCLUSIONS

Novel methods for incorporating discriminant analysis into
the elastic graph matching algorithm have been proposed�
They are based on statistical learning theory� Starting from
Fisher�s discriminant ratio� a constrained least squares op�
timization problem was set up and solved� The constrained
least squares problem was further extended to a problem
that can solved by the construction of a Support Vector
Machine�
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