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ABSTRACT

This paper deals with the statistical analysis of the behavior
of a blind copyright protection watermarking system based
on pseudorandom signals embedded in the magnitude of the
Fourier transform of the host data. The data can be either
one-dimensional (sound), two dimensional (image) or three
dimensional (video, 3d volumes). The detector scheme does
not depend on the host data dimension. The analysis per-
formed involves theoretical evaluation of the statistics of the
Fourier coefficients and an optimum detector design both
for additive and multiplicative embedding. It is proved that
the optimum detector is not the widely used correlator one.
Finally, experimental results are presented in order to show
the proposed detector’s efficiency versus that of the corre-
lator detector.

1. INTRODUCTION

The development of the digital services eased the illegal
copying, reproduction and distribution of copyright mate-
rial. Therefore, new requirements have emerged for multi-
media security and copyright protection techniques. Water-
marking has been proposed as an efficient tool for copyright
protection. The related research has exhibited tremendous
growth in the past decade.

This paper deals with designing of an optimal detec-
tor for transform watermarking methods. The watermark
embedding is performed in the magnitude of the Fourier
transform domain of the host data. It should be noted that
the data may be one dimensional (sound), two dimensional
(image) or three dimensional (video, 3d volumes). Also,
the detector scheme does not depend on the data dimen-
sion that has to be watermarked. We investigate both wa-
termarking (the additive and the multiplicative) methods.
The host data can be real [1] or complex [2].

The paper is organized as follows. The watermark de-
sign and embedding algorithm is described in the Section
2. In section 3 the detection procedure and the optimum
detector design are presented. In the next section experi-
mental results are shown, which depict the efficiency of the
proposed detection versus that of the correlator detector.
Finally, in section 5 conclusions and future work are pre-
sented.

2. WATERMARK EMBEDDING

Let x(i) be the original data where x(i) is an D-dimensional
complex signal (x(i) ∈ C D), x(i) = xR(i) + i xI(i) and
i ∈ [0, N1 − 1] × [0, N2 − 1] × ... × [0, ND − 1] = N. Let
also X(i) be the Fourier transform of x(i) and M(i) and
P (i) are the magnitude of the Fourier transform (M(i) =
|X(i)|) and its phase respectively. Let XR(k) and XI(k)
denote the real and the imaginary part of X(k) respectively.
Let also W (i) denote the watermark sequence. We assume
that W (i) consists solely of 1 and −1 that are uniformly
distributed.

The watermark should be embedded in the middle fre-
quencies due to the following reasons. Modifications in the
low frequencies of the Fourier transform will cause percep-
tible changes in the spatial domain. Furthermore, com-
pression affects mostly the high frequencies of the Fourier
transform. Thus, the watermark should be added in the
middle frequency range because, if carefully designed, it
will be robust against compression and at the same time
imperceptible. Considering that the zero frequency term
(DC term) is in the center of the transform domain, the
watermark is embedded in a ring that covers the middle
frequencies.

W (i) =

{
0, if r < R1 or r > R2

±1, if R1 < r < R2,
(1)

where r is the Euclidean distance of i from the DC term.
Taking into account that the DC term satisfies DC = M(N/2)
then r = ||N/2− i||.

The watermark can be embedded in an additive or mul-
tiplicative way. Let M ′(i) be the watermarked data. Thus,
in case of additive embedding M ′(i) equals:

M ′(i) = M(i) + p W (i). (2)

In case of multiplicative it equals to:

M ′(i) = M(i) + p W (i)M(i) = M(i) (1 + p W (i)) . (3)

3. WATERMARK DETECTION

In this section the optimal watermark detector will be evalu-
ated and the probability density function (pdf) of the mag-
nitude of the DFT coefficients will be estimated. Then,
the distribution parameter will be evaluated and finally the



2

optimum detector will be estimated by using the likelihood
ratio test (LTR). The above procedure will be performed for
both additive and multiplicative embedded watermarks.

3.1. Probability density function of magnitude of
DFT coefficients

In order to extract the optimum detector, the probabil-
ity density function of the magnitude for the DFT coeffi-
cients has to be estimated. We assume that the samples of
the host signal can be modeled as independent identically
distributed (i.i.d) random variables obeying a distribution
function fx(x) with the following properties:

E(xi) = µx, ∀i ∈ N

E(xixi+k) = 0, ∀i ∈ N.

In the sequel, the distribution of each coefficient of X(i)
will be calculated. Assuming that some of the N1, N2, ..., ND

(at least one) are greater than 30, we can conclude, accord-
ing the Central Limit Theorem, that the distribution of each
DFT coefficient is Gaussian. The statistics for the Fourier
transform coefficients are given by:

E(X(k)) =


0, k 6= 0

[E(xR) + i E(xI)]
ND∏
i=1

Ni, k = 0
(4)

var(XR(k)) =


D∏

i=1

Ni
var(xR)+var(xI )

2
, k 6= 0,1 · N

2

D∏
i=1

Nivar(xR), k = 0,1 · N
2

(5)

var(XI(k)) =


D∏

i=1

Ni
var(xR)+var(xI )

2
, k 6= 0,1 · N

2

D∏
i=1

Nivar(xI), k = 0,1 · N
2

(6)
where E(·) is the expected value and var(·) the variance.
A detailed prof of the above equations is given in the Ap-
pendix. Equation (4) shows that the mean of all the coeffi-
cients except the DC term equals zero. According to (5-6)
the variances of the real and the imaginary part for almost
all the coefficients are equal. Thus, both the real and the
imaginary part of the Fourier coefficients obeys the same
Gaussian distributions with zero mean (XR(k) ∼ N(0, σ2)
and XI(k) ∼ N(0, σ2)). Therefore, the pdf of |X(k)| =√

X2
R(k) + X2

I (k) follows the Rayleigh distribution [3]:

|Xi(k)| ∼ fx(x) =
x

σ2
exp

(
− x2

2σ2

)
, x > 0.

The above, according the equations (5-6) stands for ev-
ery coefficient of the magnitude except the DC term |M(0)|
and the middle term |M(N/2, N/2, ..., N/2)|.

Rayleigh distribution is a member of the exponential

family. It can be easily proved that σ =

√√√√ N∑
i=1

X2
i

2N
is a

minimum variance bound estimator (its variance reaches
the lower bound of the Cramer-Rao inequality).

3.2. Likelihood ratio test (LRT)

Since the probability density function of the distribution of
the coefficients is known, an optimum detector will be com-
puted using the likelihood ratio test (LRT). According to
the Neyman-Pearson theorem [3] and in order for the prob-
ability of detection to be maximized the following quantity
has to be computed:

L(x) =
p(x; H1)

p(x; H0)
. (7)

In the sequel the probability density function of the water-
marked signal will be computed for both the watermarked
with a known and an unknown watermark. Due to the fact
that the watermark consists of ±1 and its mean value is
zero then its pdf is:

fw(x) =

{
0.5 x = 1
0.5 x = −1
0 otherwise

(8)

The two hypotheses that will be examined are:
H0: data is not watermarked or watermarked by another
(unknown) watermark W ′

H1: data is watermarked by watermark W
In the case of an additive watermark, it can be easily proved
that the pdf of the watermarked signal is equal with [4]

s(x) ∼ 1

2
[fx(x− p) + f(x + p)] (9)

By substituting fx by the probability density function
of Rayleigh distribution in the above equation, we result in:

s(x) ∼ 1

2

[
x− p

σ2
e
−(x−p)2

2σ2 +
x + p

σ2
e
−(x+p)2

2σ2

]
. (10)

In case of multiplicative watermarking the pdf has the
form:

s(x) ∼ 1

2

[
1

1 + p
fx

(
x

1 + p

)
+

1

1− p
fx

(
x

1− p

)]
and after the substitution we derive to

s(x) ∼ 1
2

[
1

1+p
x

σ2 exp
(
− x2

2σ2(1+p)2

)
+

1
1−p

x
σ2 exp

(
− x2

2σ2(1−p)2

)]
(11)

Thus, using the above equations both probabilities p(x[n], H0),
p(x[n], H1) can be calculated. In the case of hypothesis H0,
for each s[n], the probability of W [n] = 1 equals the prob-
ability of W [n] = −1, (PW [n] = 1 = PW [n] = −1 = 1/2).
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Therefore, the above equations (10,11) give the probabili-
ties for hypothesis H0. Hence for the additive case,

p(x[n]; H0) ∼ 1
2

[
x[n]−p

σ2 exp
(
− (x[n]−p)2

2σ2

)
+

x[n]+p

σ2 exp
(
− (x[n]+p)2

2σ2

)]
(12)

and for the multiplicative case:

p(x[n]; H0) ∼ 1
2

[
1

1+p
x[n]

σ2 exp
(
− x[n]2

2σ2(1+p)2

)
+

1
1−p

x[n]

σ2 exp
(
− x[n]2

2σ2(1−p)2

)]
(13)

In the case of hypothesis H1, the signal is watermarked by
the known watermark W . Thus, the probabilities are:

p(x[n]; H1) ∼
x[n] + w[n]p

σ2
exp

(
− (x[n] + w[n]p)2

2σ2

)
(14)

for the additive case and:

p(x[n]; H1) ∼
x[n]

σ2(1 + w[n]p)2
exp

(
− x[n]2

2σ2(1 + w[n]p)2

)
(15)

for the multiplicative case. Assuming independence be-
tween the samples of X, we conclude that:

p(x; Hj) =

n−1∏
i=0

p(x[i]; Hj) , j = 0, 1 (16)

Using equations 12,13 ,14, 15, equation 7 has the form

L(x) =
p(x; H1)

p(x; H0)
(17)

L(x) =

N−1∏
i=0

2(x[i] + w[i]p)

N−1∏
i=0

1∑
j=0

[
(x[i]− (−1)jp) exp

[
x[i]p(w[i]+(−1)j)

σ2

]]
(18)

L(x) =

N−1∏
i=0

2
1∑

i=0

[
(1+w[i]p)2

(1+(−1)jp)2
exp

(
px[i]((−1)j−w[i])

σ2(1+p)2(1+w[i]p)2

)]
(19)

for the additive and multiplicative case respectively.

4. EXPERIMENTAL RESULTS

In this section experiments are performed in order to verify
the superiority of the proposed detector against the cor-
relator. The experiments have been performed on digital
images. The gray scale (512 × 512) Lena image was used
as a host image. A random watermark was embedded in
it. The embedding procedure has been performed on either
additively or multiplicatively. Then, two detector outputs
have been calculated using the proposed detector and the

Figure 1: ROC curves for both detectors (multiplicative
embedding)

correlator. In order to calculate both false alarm and false
rejection probabilities both correct and erroneous keys have
been used during detection. The watermarked image was
altered by intentional attacks for the examination of the ro-
bustness against attacks. In Figure 1 the ROC curves are
shown both for the proposed detector and correlator. From
the above figure, can be seen very clear the superiority of
the proposed detector is against detector.

5. CONCLUSIONS AND FUTURE WORK

This paper deals with the statistical analysis of the behavior
of a blind copyright protection watermarking system based
on pseudorandom signals embedded in the magnitude of the
Fourier transform of the data and the designing of an opti-
mum detector. The detector scheme does not depend on the
data dimension that has to be watermarked thus the data
can be either one, two or three dimensional. Both additive
and the multiplicative embedding methods are examined
and experimental results are performed in order to show
the detector’s efficiency against correlator. Data following
more realistic models than i.i.d. are under consideration for
future work.
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