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Abstract

This paper presents an accurate, very fast approach for the deformations of 2D physically based shape models representing
open and closed curves. The introduced models overcome the main shortcoming of other deformable models, i.e. computation
time. The approach relies on the determination of explicit deformation governing equations, that involve neither eigenvalue
decomposition nor any other computationally intensive numerical operation. The approach was evaluated and compared with
another fast and accurate physics-based deformable shape model, both in terms of deformation accuracy and computation
time. The conclusion is that the introduced model is completely accurate and is deformed very fast on current persona
computers.
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I. INTRODUCTION

A key problem in machine vision is how to describe
features, contours, surfaces, and volumes, so that they
can be segmented, recognized, matched, or any other
similar underlying process. The primary difficulties can
be summarized as: a) object descriptions are sensitive
to noise, b) objects can be nonrigid, and c) the shape
of the 2D object projection varies with the viewing
geometry. These problems have motivated the use of
deformable models [1]-[5], to interpolate, smooth, and
warp raw data, since these models provide reliable shape
reconstruction tools that are both robust and generic.

The class of deformable shape models originates with
the method of active contours (“snakes’) introduced by
Kass et al. [1], that are used to locate smooth curves in
2-D images. Since then, deformable models have been
used for a number of applications in 2-D and 3-D by
Terzopoulos, Witkin and Kass [6].

There have been two basic classes of deformable
models: those based on parametric solid modelling prim-
itives, such as those employed by Pentland et al. [2], and
those based on mesh-like surface models, such as those
in the work of Terzopoulos et al. [6]. In the case of
parametric modelling, fitting has been performed using
the “inside-outside” function of the modelling primitive
[7], [8], whereas in the mesh surface models, a physical-
motivated energy function has been employed [6], [9].

Both of these approaches are quite slow, requiring
dozens of iterations in the case of parametric formu-
lation, and up to hundreds of iterations in the case
of physicaly-based mesh deformation. Hence, al the
deformation-based approaches are too computationally
intensive so as to achieve the desired results, since
each intermediate step turns out to be extremely time-
consuming. Thus, although finite elements are a powerful
tool in computer vision applications, they are still com-
putationally intensive when used to deform an object.
We address this problem by introducing a 2D physics-
based deformable approach representing open and closed
curves, based on the finite element method (FEM), using
explicit functions. Hence, a very fast approach is pre-
sented in this paper, involving only the calculation of an
explicit function for the description of the deformations
of the object under examination, as opposed to the
eigenvalue decompoasition that is necessary in most FEM
approaches.

Our approach was motivated by the technique pre-
sented in [10], [11], which consists of analyzing non-
rigid motion, with application to medical images. Nastar

et al. [10] approximated the deforming object con-
tour dynamically, using a physically based deformable
curve/surface. In order to reduce the number of pa-
rameters describing the deformation, moda analysis,
providing a spatial smoothing of the curve/surface, was
exploited. On the same basis, we employed modal ana-
lysis and, after simplifying the deformation governing
eguations, we could safely infer that the deformations
of open and closed 2D curves have explicit governing
equations, involving neither eigenvalue decomposition
nor any other computationally intensive operation.

The remainder of the paper is organized as follows.
The 2D physics-based deformable shape models [10] are
presented in Section II. In Section 111 the proof and the
properties of the new deformable physics-based govern-
ing equations are introduced. A comparison between the
initial deformation models [10] and the novel ones, are
presented in Section 1V, and final conclusions are drawn
in Section V.

I1. 2D PHYSICS-BASED DEFORMABLE SHAPE
MODELLING BASED ON MODAL ANALYSIS

In this Section, physically based deformable shape
models [10], [11] exploiting modal analysis are in-
troduced. We consider both the surface and volume
properties of the objects at hand. We restrict ourselves
to elastic deformations, i.e. we assume that the object
recovers its original configuration as soon as all applied
forces causing the deformation are removed.

Modelling an elastic 2D boundary can be achieved
by an open or closed chain topology of N masses on
the contour. Each model node has a mass m and is
connected to its two neighbors with identical springs of
stiffness k. The ratio a = £ constitutes the so-called
characteristic value of the model, which is a constant
value that describes the physical characteristics of the
model. To be more detailed, it precisely determines the
model’s physical behavior. When « increases, the object
tends to behave as a solid one, while when a decreases
it can be treated as an elastic one.

The node coordinates of the model under examination
are stacked in vector:

Xy = (xtl)vy(l)a axS)Vay?V)T (1)
where N isthe number of vertices (masses) of the chain.
The parameters of the elastic properties of the model
are needed (stiffness constant, dumping forces, external
forces, etc.) for its full description [12]. The deformation
of the model is governed by adifferential matrix equation



[13]:

MU +CU+KU=F 2

where U is a vector storing nodal displacements of
the initial circular chain Xg. M, C, and K [12] are
the mass, damping, and stiffness matrices of the model,
respectively, and F is the force vector resulting from the
attraction of the model by the object contour (usually
based on the Euclidean distance between the object
contour and the node coordinates). Equation (2) isafinite
element formulation of the deformation process.

Instead of solving directly the equilibrium equation
(2), one can transform it by a basis change:

U=9U )

where W is the sguare nonsingular transformation matrix
of order N to be determined, and U is referred to
as the generalized displacement vector. One effective
way of choosing W is setting it equal to ®, a matrix
whose entries are the eigenvectors of the generaized
eigenproblem:

K¢; = wMe; (4)

N
U=3U=> i
=1
Equation (5) is referred to as the modal superposition
equation. The i-th column of ®, denoted by ¢;, is the
i-th vibration mode, @; (the i-th scalar component of U)
its amplitude, and w; its frequency. It should be noted
that the vibration modes of a generalized eigenproblem
involving real symmetric matrices can be chosen to be
orthonormal vectors. Furthermore, using the standard
Rayleigh hypothesis [10], matrices K, M and C are
simultaneously diagonalized:

M =1
dTKd = 02

()

(6)

where 9 is a diagonal matrix, whose elements are the
frequencies w? and I is the identity matrix.

In practice, we wish to approximate nodal displace-
ments U by U, which is the truncated sum of the M
low-frequency modes, where M < N.

_ M
Ur > i
=1
Vectors ¢;, i+ = 1,...,M form the reduced modal

basis of the system. This is the major advantage of
modal analysis: it is solved in a subspace corresponding

(7)

to the M truncated low-frequency vibration modes of
the deformable structure [2], [10], [11]. The number
of vibration modes retained in the object description,
is chosen so as to obtain a compact but adequately
accurate representation. A typical a priori value for M,
covering many types of standard deformations is equal
to the quarter of the number of degrees of freedom of
the system (i.e. 25% of the modes are kept).

An important advantage of this formulation is that
the vibration modes (eigenvectors) and the frequencies
(eigenvalues) of an open or closed chain topology have
an explicit expression [10] and they do not have to
be computed using slow eigen-decomposition techniques
(due to the dimensions of matrices K and M). The
frequencies of the closed chain are given by:

w? = 4asin? <%>

and the vibration modes are obtained by:

o, = cos2mj ! 9
i =1 N

where i € {1,2,... ,N} and j € B(N). B(N) is the
first Brillouin zone [10] and is equal to {—% +1,...,
4} for N even, and {—&F, ... &=L for N odd.
Furthermore, the case of an open chain topology is very
similar, where the frequencies are given by:

(8)

w? = 4a sin® <%> (10)
and the vibration modes are obtained by:
B 2m(2i — 1)j r
¢Z—|:...,COST,...:| (11)

wherei e {1,2,... ,N}and j € [0,... , N — 1]. Substi-
tuting (5) into (2) and premultiplying by ®”', (2) yields:

U+CU+QU=F (12)
where C = #7C® and F = ®”F.

In many computer vision applications [11], when the
initial and the final states are known, it is assumed that
a constant force load F is applied to the body. Thus,
eguation (2) is caled the equilibrium governing equation
and corresponds to the static problem:

KU=F (13)

In the new basis, equation (13) is further simplified to
2N scalar equations:

(14)



where w; designates the i-th frequency (eigenvalue) and
the scalar u; is the amplitude of the corresponding vibra-
tion mode (corresponding to eigenvector ¢;). Equation
(14), indicates that, instead of computing the displace-
ments vector U from eguation (13), we can compute its
decomposition in terms of the vibration modes of the
origina chain.

The physical representation (final state) X(U) is fi-
nally found by applying the deformations to the initial
circular chain:

X(U) =X, + @0 (15)

I11. A CLOSED-FORM REPRESENTATION OF THE 2D
PHYsIcs-BASED DEFORMABLE MODELS

It is obvious that the deformations described above are
still computationally intensive since they require the cal-
culation of alarge number of summations. In this Section
our goal isto simplify the deformation process (Section
I1) and to introduce a new way of calculating the defor-
mations, achieving very fast deformation computation,
without loss of accuracy. As aready mentioned, physics-
based closed chain deformable model deformations U
are described by:

Z—Z an

1—|—w

Fnén(j)]
IDIARECAC)

(16)

where i € {1,2,..., N}, with N corresponding to the
total number of nodes of the model, w? is given by
equation (8), ¢;(j) by equation (9), B(N) is the first
Brillouin zone, and findly F; denotes the = and y
components of the force acting on node i:
F:(FlvalyaF2w7F2y7"‘aFNZaFNy)T (17)
As it can be proved, the above equation for closed
models is equivalent to:

N N2d+)\N2d

e

=1

1+4 plV — AN (18)

The deformation governing equation for open chain
physics-based deformable models is proved to be:

S;; = al= [MQN—2|i—j| 4 )\2N—2|z‘—j\] (19)
Py = qiti—1 [M2N—2(i+j—1) i )\2N—2(i+j—1)} (20)

Sij + B
2N )\QN

Ui m Z 7 (21)

where 1 and A are two constant values equal to @
and @ respectively, a isthe model’s characteristic
value, N isthe total number of model nodes, and d is the
distance (in nodes) between the node under examination
and the node, where force F; is applied. Hence, in
practice, d (only for the closed models case) is equal
to man(|i — jI, [N — |i — jl|).

For convenience, for the rest of the paper, our con-
sideration will be focused on the closed physics-based
deformable models. Thus, in practice, we wish to ap-
proximate nodal displacements U by U, the truncated
addition of the M’ adjacent nodes, where M’ < N:

- 1 M pN=2d 4 \N-2d
U; ~ Fia® 22
i 1+ 4a T+ da j;M/ J MN —_\N ( )

The nodes i-M’ to i+M’, for each node i, form the
reduced nodal basis of the system. This is the maor
advantage of the new form of the deformation governing
equation: it is solved in a nodal subspace corresponding
to the M’ adjacent model nodes of the deformable
structure [2], [10], [11]. The number of nodes retained, in
the object description, for the calculations in each step is
chosen so as to obtain a compact but adequately accurate
contour representation. After performing a sequence of
experiments it has been observed that a typical a priori
value for M’, covering many types of standard deforma-
tions, is equal to @lnN. Thus, only a very small
number of adjacent nodes is taken into account in the
calculations. This formulation is proved to be very fast,
capable of use of real time applications.
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Fig. 1. The relationship between model characteristic value a, and
the nodal subspace M’, with respect to the total number of model
nodes N.



V. PERFORMANCE ANALY SIS OF THE PROPOSED
METHOD

In this Section, a comparison between the initial
physics-based deformable model using modal anaysis
(DMMA) described in Section 11 and the explicit formu-
lation deformable model (EFDM) introduced in Section
Il is presented. The comparison is performed in terms
of the displacement estimation error and the required
computation time. The displacement error is defined as:

1
R )

where U; and U] are the displacements calculated using
DMMA (15) and the deformable model under com-
parison respectively. All experiments are performed on
a Pentium 11 (700 MHz) workstation under Windows
2000 Professional without any particular code optimiza-
tion.
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Fig. 2. Error comparison. Errors regarding the modal and nodal
reduction case respectively.

The error comparison is illustrated in Figure 2. All
errors in the Figure, are in a percentage form, due to
the fact that the absolute error is not that representative,
since it depends on the input forces applied to the model.
The error difference of the EFDM and the DMMA is
zero under any conditions. That is, the two equations, as
expected, produce exactly the same results regardless of
the deformable object characteristics a and the number
of model nodes N. Furthermore, in Figure 2, one can
see the errors of the initial deformable model in a
reduced modal space (DMMAT), where only 25% of the
eigenvalues are taken into account. The average error is
0.00293462%, which is insignificant. Thus, as Nastar et
al. [10] claim, one can use the DMMAT without any
particular loss of accuracy. Moreover, Figure 2 illustrates

the errors for the introduced deformable physics-based
model in a reduced nodal space (EFMDT), where only
@ln]\f adjacent (neighboring) nodes are consid-
ered. The average error is 0.00000314%, which is negli-
gible with respect to the globa deformation of the model,
and consequently deformations can be computed using
EFDMT without any particular loss of accuracy. Besides,
it is clearly depicted in Figure 2 that deformations
extracted from the EFDMT import an error 900 times
less, in average, than the corresponding deformation
computed by DMMAT. It must be noted that the errors
do not change with the number of nodes V. Furthermore,
note that error axis Y is a logarithmic one.
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Fig. 3. Manual Computations. Computations of the DMMA and
DMMAT (25% of eigenvalues) have been manually estimated. The
same task is performed for the EFDM and the EFDMT as well.

Additionaly, we have performed a computational
complexity analysis of the methods under comparison.
The DMMA (16) requires approximately 6 N3 4 14N?
computations (additions and multiplications, which are
considered of equal complexity), where N is the num-
ber of model nodes. The simplified physics-based de-
formable model, EFDM, (eg. 18) requires only 1 N3 +
%N 2 computations. Thus, in theory, the explicitly cal-
culated model has approximately 12 times fewer cal-
culations than the initial one, for every N (Figure 3).
However, the same task was performed for the DMMAT
and the EFDMT. The corresponding computations are
given by 1N3 + 350N2 and N? — NinN(1 + InN)
respectively. These curves are plotted in Figure 3. It
is worth noticing that the EFDMT has computational
complexity of order O(N?), whereas the DMMAT has
computational complexity O(N3).

Moreover, we have performed computation time
benchmarking experimentally. Figure 4 shows the com-
putation time for al methods under comparison. The
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model drastically reduces the computation time needed
to perform the deformation. The deformation equations
were simplified and analyzed. As a result, a closed-
form solution can be reached for the objects deformation.
This solution is very useful in analyzing the deformation
behavior of the contour at hand.

The extremely low computational time and the low
deformation error with respect to al the other avail-
able techniques in the literature, makes the introduced
physics-based deformable model a very promising tool
for various image analysis and computer vision applica-
tions.

Fig. 4. Time comparison. The EFDM compared with the DMMA
with respect to computational time. The same task is performed for
the DMMAT and the EFDMT. Times are measured in seconds.

EFDM and DMMAT needs approximately the same
computation time. This time is almost 3 times less than
the corresponding time value of the DMMA. The com-
putation times of these two cases are quite satisfactory,
but they are still far from the desired e.g. for rea
time use which is achieved by EFDMT. It computes
the deformations fast enough and only in the case the
model nodes are more than 150.000, the computation
time is more than 1 second. Therefore, that model can
be deformed 100 times per second while having 20.000
nodes and 6, 25 times per second if it has 25.000 nodes.
Hence, the EFDMT can be safely used in rea time
applications. Furthermore, it must be mentioned that in
Figure 4 the computation times are plotted in a loga-
rithmic axis for better visualization. In the cases of the
EFDM and the DMMAT we have approximately equal
computation time. The DMMA takes more computation
time to achieve a result, whereas the EFDMT is much
faster in performing the same deformation. We can
achieve an acceleration of 4-5 orders of magnitude for
amost any contour chain of length N. It must noted
that the calculated execution speeds shown in Figure 4
are well in line with the comparing computational results
shown in Figure 3.

V. CONCLUSION

In this article, we have presented a closed-form so-
lution for 2D physics-based models deformation, aong
with their properties. Although all existing physics-based
deformable models used in the literature, are a power-
ful tool in a number of computer vision applications,
they are still computationally intensive when deforming
an object. The presented 2D physics-based deformable
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