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ABSTRACT

This paper presents an accurate, very fast approach for the defor-
mations of 2D physically based shape models representing open
and closed curves. The introduced models overcome the main
shortcoming of other deformable models, i.e. computation time.
The approach relies on the determination of explicit deformation
governing equations, that involve neither eigenvalue decomposi-
tion nor any other computationally intensive numerical operation.
The approach was evaluated and compared with another fast and
accurate physics-based deformable shape model, both in terms of
deformation accuracy and computation time. The conclusion is
that the introduced model is completely accurate and is deformed
very fast on current personal computers.

1. INTRODUCTION

A key problem in machine vision is how to describe features, con-
tours, surfaces, and volumes, so that they can be segmented, recog-
nized, matched, or any other similar underlying process. The pri-
mary difficulties can be summarized as: a) object descriptions are
sensitive to noise, b) objects can be nonrigid, and c) the shape of
the 2D object projection varies with the viewing geometry. These
problems have motivated the use of deformable models [1]-[5], to
interpolate, smooth, and warp raw data, since these models pro-
vide reliable shape reconstruction tools that are both robust and
generic.

The class of deformable shape models originates with the me-
thod of active contours (“snakes”) introduced by Kass et al. [1],
that are used to locate smooth curves in 2-D images. Since then,
deformable models have been used for a number of applications in
2-D and 3-D by Terzopoulos, Witkin and Kass [6].

All approaches are quite slow, requiring dozens or even up
to hundreds of iterations. Hence, all the deformation-based mod-
elling approaches are computationally intensive since each itera-
tion turns out to be very time-consuming. Thus, although finite
elements are a powerful tool in computer vision applications, they
may be computationally intensive for certain applications, espe-
cially the real time ones. We address this problem by introducing
a 2D physics-based deformable approach representing open and
closed curves, based on modal analysis, using explicit functions.
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This leads to a very fast model deformation approach, involving
only the calculation of an explicit function for the description of
the deformations of the object under examination, as opposed to
the eigenvalue decomposition that is necessary in classical shape
modal analysis.

Our approach was motivated by the technique presented in
[3, 5], which consists of analyzing non-rigid motion, with applica-
tion to medical images. Nastar et al. [3] approximated the dynamic
deformations of the object contour, using a physically based de-
formable curve/surface. In order to reduce the number of parame-
ters describing the deformation, modal analysis was exploited that
provides a spatial smoothing of the curve/surface. On the same ba-
sis, we employ modal analysis and, after simplifying the deforma-
tion governing equations, we prove that the deformations of open
and closed 2D curves have explicit governing equations, involving
neither eigenvalue decomposition nor any other computationally
intensive operation.

The remainder of the paper is organized as follows. The 2D
physics-based deformable shape models [3] are presented in Sec-
tion 2. In Section 3 the proof and the properties of the new de-
formable physics-based governing equations are introduced. A
comparison between the initial deformation models [3] and the
novel ones, are presented in Section 4, and final conclusions are
drawn in Section 5.

2. 2D PHYSICS-BASED DEFORMABLE SHAPE
MODELLING BASED ON MODAL ANALYSIS

In this Section, physically based deformable shape models [3, 5]
exploiting modal analysis are introduced. We consider both the
surface and volume properties of the objects at hand. We restrict
ourselves to elastic deformations, i.e. we assume that the object re-
covers its original configuration as soon as all applied forces caus-
ing the deformation are removed.

Modelling an elastic 2D boundary can be achieved by an open
or closed chain topology of � virtual masses on the contour. Each
model node has a mass � and is connected to its two neighbors
with identical springs of stiffness �. The ratio � � �

�
constitutes

the so-called characteristic value of the model, which is a constant
value that describes its physical characteristics and determines its
physical behavior. The node coordinates of the model under ex-
amination are stacked in vector:
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where � is the number of vertices (masses) of the chain and 	 de-
notes the 	-th deformation time instance. The model under study,
is a physics-based system governed by the fundamental equation
of dynamics:
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where �� is the mass of the point under study and ���� its accelera-
tion under total load of forces. ����� is a damping force, ��	����
the external load on node under study, and ����� is the elastic force
due to node neighbors. The above governing equation is expressed
for all model nodes, and setting the natural length 
� of the springs
equal to zero, we could assume that the model can be considered
within the framework of linear elasticity. As a consequence, our
solution lies in a set of linear differential equations with node dis-
placements decoupled in each coordinate, regardless of the magni-
tude of the displacements.

The governing equation can now be written in a matrix form
[7]:

����� ����� � �� (3)

where � is the nodal displacements vector. ���, and � [8] are
the mass, damping, and stiffness matrices of the model, respec-
tively, and �� is the external force vector, usually resulting from
the attraction of the model by the object contour (sometimes based
on the Euclidean distance between the object contour and the node
coordinates). Equation (3) is a finite element formulation of the
deformation process.

Instead of solving directly the equilibrium equation (3), one
can transform it by a change of basis:

� � 	
� (4)

where 	 is the square nonsingular transformation matrix of or-
der � to be determined, and 
� is referred to as the generalized
displacement vector. One effective way of choosing 	 is setting
it equal to �, a matrix whose entries are the eigenvectors of the
generalized eigenproblem:
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Equation (6) is referred to as the modal superposition equation.
The 
-th eigenvector, i.e. the 
-th column of �, denoted by ��, is
also called the 
-th vibration mode, ��� (the 
-th scalar component
of 
�) is its amplitude, and �� is the corresponding eigenvalue (also
called frequency). If the matrix 
� � ���� is diagonal (standard
Rayleigh hypothesis [3]), then in the modal space the governing
matrix-form equations decoupled into � scalar equations:
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Solving these equations at time 	 leads to
�
����
�
���
���
�

, and the
displacement � of the model nodes is obtained by the modal su-
perposition equation (6).

In practice, we wish to approximate nodal displacements� by
��, which is the truncated sum of the � � low-frequency vibration
modes, where � � � � :
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Eigenvectors �������
���
�� form the reduced modal basis of the
system. This is the major advantage of modal analysis: it is solved
in a subspace corresponding to the �� truncated low-frequency
vibration modes of the deformable structure [3, 4, 5]. The number
of vibration modes retained in the object description, is chosen
so as to obtain a compact but adequately accurate representation.
A typical a priori value for � �, covering many types of standard
deformations is equal to one quarter of the number of the vibration
modes.

An important advantage of the formulations described so far,
in the full as well as the truncated modal space, is that the vibra-
tion modes �� and the frequencies �� of an open or closed chain
topology have an explicit expression [3] and they do not have to be
computed using eigen-decomposition techniques. The frequencies
and the vibration modes of the closed chain are given by:
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where 
 � ��� �� � � � � �� and � � ����. ���� is the first Bril-
louin zone [3] and is equal to
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for � odd. Furthermore, the case of an open

chain topology is very similar, where the frequencies and the cor-
responding vibration modes are obtained by:
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where 
 � ��� �� � � � � �� and � � ��� � � � � � � ��.
Thus, the deformations of the described Deformable Model

based on Modal Analysis (abbreviated here as DMMA), for a clo-
sed chain as well as an open one, can be given by:
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whereas the deformations of the Truncated Deformable Model ba-
sed on Modal Analysis (abbreviated here as TDMMA), for both
open and closed chains, can be described by:
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3. A CLOSED-FORM REPRESENTATION OF THE 2D
PHYSICS-BASED DEFORMABLE MODELS

It is obvious that the deformations described in the previous Sec-
tion are still computationally intensive, since they require the cal-
culation of a large number of summations in (13) and (14). In this
Section, our goal is to simplify the deformation process (Section
2) and to introduce a new way of calculating the deformations,
achieving very fast deformation computation, without loss of ac-
curacy.

As already mentioned, the deformations � of the DMMA ap-
plied to a closed chain are given by equation (13). (13) is applied



to the � and � coordinates independently. �� denotes the � and �
components of the force acting on node 
:

� � ���� � ��� � ��� � ��� � � � � � ��� � ��� �
� (15)

and finally �� denotes the � and � components of the displacement
of the node 
:

� � ���� � ��� � ��� � ��� � � � � � ��� � ��� �
� (16)

As it can be proved, the deformations of the DMMA are equal,
for closed curves, to:
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We call formulation (17) Explicit Formulation of Modal Analy-
sis (EFMA) model. The deformation governing equation for open
chain physics-based deformable models is proved to be:
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where � and � are two constant values equal to
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respectively, � is the model characteristic value, � is the
total number of model nodes, and � is the distance (in number of
nodes) between the node under examination and the node, where
force �� is applied. Hence, in practice, � is equal to �
��	
 �
�	� 	� � 	
� �		� for the closed case models.

Due to the fact that the model exhibits linear elasticity and that
neighboring nodes cause the forces �����, we are able to appro-
ximate nodal displacements� (17) without any substantial loss of
accuracy, by the truncated contribution of the ���� adjacent nodes,
where � �� � � :

�� � ��
� � 	�

������
�������

���
� �

���� � �����

�� � ��
(21)

The nodes 
-� �� to 
+� �� , for each node 
, form the reduced nodal
basis of the system. This is the major advantage of the new form
of the deformation governing equation: it is solved in a nodal sub-
space corresponding to the ���� adjacent model nodes of the de-
formable structure [4, 3, 5]. From now on, the deformation cal-
culation in a reduced nodal space (21) will be called Truncated
Explicit Formulation of Modal Analysis (TEFMA). The number
of nodes retained in (21) is chosen so as to produce a compact
but adequately accurate shape representation. After performing
a sequence of experiments, it has been observed that a typical a
priori value for � �� , covering many types of standard deforma-
tions, is equal to

�
������

�

�� . Thus, only a very small number

of adjacent nodes is taken into account in the calculations. This
formulation is proved to be very fast, capable of use of real time
applications.

4. PERFORMANCE ANALYSIS OF THE PROPOSED
METHOD

In this Section, a comparison between the DMMA and TDMMA
described in Section 2 and the EFMA and TEFMA introduced in
Section 3 is presented. The comparison is performed in terms of
the displacement estimation error and the required computation
time. The relative displacement error is defined as:
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where �� and � �
� are the displacements calculated using DMMA

(13) and the deformable method under comparison (TDMMA and
TEFMA) respectively, i.e., DMMA is the reference deformable
method. The displacement error ����� (22) of the EFMA and
the DMMA is zero, as proven in the Appendix. All experiments
are performed on a Pentium III (700 MHz) workstation under Win-
dows 2000 Professional without any particular code optimization.
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Fig. 1. Error comparison. Errors regarding the modal and nodal
reduction case respectively.

The displacement errors ������ and ������ (22) com-
parison versus node number � are illustrated in Figure 1. All
errors in the Figure, are in a percentage form, due to the fact that
the absolute error is not that representative, since it depends on
the input forces applied to the model. Note that error axis � is
a logarithmic one. In the case of TDMMA, where only ��� of
the eigenvalues are taken into account, the relative average error
is only ���	����, which is not so important. Thus, as Nastar et
al. [3] claim, one can use the TDMMA without any particular
loss of accuracy. In the case of TEFMA only

�
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jacent (neighboring) nodes are considered. The relative average
error is only ��������, which is negligible with respect to the
global deformation of the model, and, consequently, deformations
can be computed using TEFMA without any particular loss of ac-
curacy. Besides, it is clearly depicted in Figure 1 that deformations
extracted from the TEFMA have, in average, a relative error ���
times less than the corresponding deformation computed by TD-
MMA. It must be noted that the errors do not change with the
number of nodes � .

Additionally, we have performed a computational complex-
ity analysis of the methods under comparison. We assume that



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

nodes (thousands)

co
m

pu
ta

tio
ns

DMMA 
EFMD 
DMMAT
EFDMT

Fig. 2. Manual Computations. Computations of the DMMA and
DMMAT (25% of eigenvalues) have been manually estimated. The
same task is performed for the EFDM and the EFDMT as well.

the four elementary mathematical operations � additions, abstrac-
tions, multiplications and divisions � have the same computation
time. Furthermore, sine, cosine and square root calculations are
assumed to be computed by a Taylor series expansion. Then it can
be proven that DMMA (13) requires approximately ��	������
�
�
�
� elementary computations, where � is the number of model

nodes. EFMA (17) requires only �
�
�	 ��� � �� computations,

while TDMMA and TEFMA require 	
�
�	 � ��

�
�� � ���



� and

�� � �
���� � 
��� � �� computations respectively. These
curves are plotted in Figure 2. It is worth noting that TEFMA
has computational complexity of order �����, whereas even TD-
MMA has computational complexity ���	�.
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Fig. 3. Time comparison. The EFDM compared with the DMMA
with respect to computational time. The same task is performed
for the DMMAT and the EFDMT. Times are measured in seconds.

Furthermore, we have performed computation time benchmar-
king experimentally. Figure 3 shows the computation time for all
methods under comparison. It must be mentioned that, in Figure
3, the computation times are plotted in a logarithmic axis for bet-

ter visualization. EFMA and TDMMA require approximately the
same computation time. Both are 3 times faster than DMMA. The
computation times of these two cases are quite satisfactory, but
they are still far slower than TEFMA. TEFMA computes the de-
formations very fast. The computation time of TEFMA is more
than 1 second only when the model has more than ������� nodes.
Therefore, TEFMA can be deformed 100 times per second for con-
tours having ������ nodes and �� �� times per second for contours
of ������ nodes. Hence, it can be safely used in many real time
applications. TEFMA can achieve a speedup of 4-5 orders of mag-
nitude versus DMMA for almost any contour length. It must be
noted that the calculated execution speeds shown in Figure 3 are
well in line with the comparing computational results shown in
Figure 2.

5. CONCLUSION

In this paper, we have presented a closed-form solution for 2D
physics-based shape model deformation along with its properties.
The deformation equations [3] were simplified and analyzed. As a
result, a closed-form solution can be reached for the objects defor-
mation. The presented 2D physics-based deformable model dras-
tically reduces the computation time needed to perform the defor-
mation. This solution is very useful in analyzing the deformation
behavior of the contour at hand. The extremely low computa-
tional time and the low deformation error with respect to all the
other available techniques in the literature, makes the introduced
physics-based deformable model a very promising tool for various
image analysis and computer vision applications.
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