
Improving Concavity Performance of Snake Algorithms

A. Roubies, A. Hajdu, I. Pitas
Dept. of Informatics, Aristotle University of Thessaloniki, Box 451, GR-54124 Thessaloniki, Greece

email: pitas@aiia.csd.auth.gr

Abstract— Poor convergence to concave boundaries is a
limitation in the use of snakes as a contour approximation tech-
nique. The external force for active contours, called gradient
vector flow (GVF), has provided a remarkable improvement to
this problem. However, the technique requires high computation
time for reliable concavity performance. In this paper, we
propose an efficient solution to overcome these drawbacks.
We develop a method that directs the snake further into
the concavities and saves iterations, adding new snake points
further inside concavities. Our approach can be applied to other
snake models based on external vector fields that provide worse
concavity performance than GVF.

I. INTRODUCTION

Boundary extraction is an important topic in digital image
processing, thus several approaches have been developed in
the past to this end. One of them is the snake (active contour)
model introduced in [6]. The basic idea here is to evolve a
curve iteratively in order to approach the object boundary.

Considering its traditional formulation, the snake is a
parametric contour that deforms over a series of iterations
influenced by internal and external forces. Internal forces
control the snake stretching and bending, while external
forces push the snake towards image edges. The problem
with the traditional snake model is that it provides poor con-
vergence to object concavities and the initial snake should be
close to the desired boundary. Recently, an improved snake
method was proposed in [7] to overcome these difficulties,
based on the GVF field. As in our case large capture range (to
simplify user interaction) and better concavity performance
(to detect e.g. human bodies) are desired, we found the GVF
snake basically suitable for our purposes. However, GVF-
based procedures are known to be rather slow for reliable
concavity performance, as the number of snake iterations
should be increased. Therefore, we developed supplementary
techniques to make our computations faster.

The paper is organized as follows: in section 2 we present
the problem we faced, when applying the GVF snake, while
in section 3 we describe the proposed solution. Experimental
results are presented in section 4, and some conclusions are
drawn in section 5.

II. THE PROBLEM

As it was shown in [7], flexible initialization of the
snake is allowed and convergence to boundary concavities is
improved with GVF. The snake deformation is affected by

Research was supported by the project SHARE: Mobile Support for Res-
cue Forces, Integrating Multiple Modes of Interaction, EU FP6 Information
Society Technologies, Contract Number FP6-004218.

weight parameters for the shape (elasticity, rigidity, viscosity)
and the external field. Two distance thresholds are considered
to control the number of the snake points (snaxels), Dmax

and Dmin as the maximum and minimum distance between
two consecutive snaxels, respectively. As the snake is de-
formed through iteration steps, it is natural that the number
of snaxels highly influences the computation time. As we
work with images of size 720 x 576 pixels, the snake can
be expected to have many snaxels. Convergence time and
Dmax are inversely proportional values, as it is displayed in
Table 1. Therefore a large Dmax value should be selected to
reduce computation time. However, if we use e.g. Dmax= 7,
although the snake converges well to the object boundaries,
it is expected to perform worse than a smaller Dmax, in case
of a concavity, in general.

TABLE I
COMPUTATION TIMES FOR SNAKE CONVERGENCE FOR FIG. 1,

WITH 100 GVF SNAKE ITERATIONS (Dmin=1).

Dmax 2 3 4 5 6 7
Time (sec) 295 64 20 9 5 3

In our application, human body detection is of high im-
portance, thus the snake should converge into the concavities
defined by e.g. the legs or arms. Thus, we faced the problem
to provide reliable but fast GVF snake concavity convergence
with a relatively small number of snaxels.

Fig. 1. Thermal photo of a human body shape. GVF snake iterated 100
times (Dmax=7, Dmin=1).

III. THE PROPOSED METHOD

The proposed method directs the snake further into the
concavities and saves iterations. We suggest the following
steps to improve the basic GVF snake algorithm:



1. Calculate the GVF field in the common way described in
[7].
2. Calculate the divergence of the GVF field and use it to
locate the snaxels that have not converged to an edge and
remove them.
3. Find the broken parts of the snake and check whether
concave regions are expected to be there.
4. Add new snaxels inside the concavities.

A. Divergence

As we use the GVF field for deforming the snake, we
calculate the divergence of the GVF field to decide whether
snaxels reached the desired boundaries. Let F(x,y) = P(x,y)i
+ Q(x,y)j be the GVF field of the image, where P and Q
are the horizontal and vertical axis vectors respectively, and
i,j are pixel coordinates. The divergence of F , denoted by
divF , is the scalar field, defined by [8]:

divF =
∂P

∂x
+

∂Q

∂y
. (1)

The physical significance of the divergence is the rate
at which flow ”density” exits a given region of space. In
the divergence field, low values correspond to the object
boundaries, while large values to those areas which are far
from the boundaries. As a result, the GVF divergence values
for each of the snaxels provide the information whether the
snaxel has converged to an edge or not. In Figure 2, the GVF
field is shown for a part of Figure 1, while Figure 3 depicts
the divergence values for a larger area.

Fig. 2. Gradient vector flow field.

Fig. 3. Divergence of the gradient vector flow field.

The use of the divergence field instead of some simple
considerations on the local vector behavior (like in [1],
[2]) provides a more detailed description for thresholding.

Namely, we consider that a snaxel with coordinates (i,j) has
reached the boundary, if

divF (i, j) < θ, (2)

where θ is an appropriately chosen threshold. Snaxels that
do not satisfy (2) are removed from the snake, as it can be
seen in Figure 4a, b.

(a)

(b)

(c)

(d)

Fig. 4. a) GVF snake after 50 iterations, overlaid on the divergence field.
b) Remaining snaxels after thresholding. c) Finding the halfplane containing
the concavity. d) Finding a new snaxel in the concavity.

B. Adding new snaxels in concave regions

After divergence thresholding, we go on with finding
new snaxels in the concavities. To do so, first we consider



consecutive (cut-off) snaxels A(x1, y1) and B(x2, y2) for
whose distance d we have:

d =
√

(x1 − x2)2 + (y1 − y2)2 > λ > Dmax (3)

with some positive threshold λ. In Figure 4b some cut-off
snaxels can be seen at a large distance at the leg-gap. From
a practical point of view, as the removal does not influence
the ordering of the snaxels, this step can be executed easily.
Let the equation of the line that passes through snaxels A
and B be

y = ax + b. (4)

Line (4) divides the Cartesian plane into two halfplanes. The
line having the equation

y = apx + bp (5)

ap = − 1
a

bp = y1+y2
2 − 1

a
x1+x2

2

(6)

is perpendicular to line (4) and goes through the middle of
the line segment AB. To force the snake into the concavity,
we add a new snaxel C lying on line (5), at a distance

d′ = c · d (7)

from line (4). The parameter c adjusts the depth where the
new snaxel is defined. The three snaxels A,B and C form
a triangle, thus we call this method a “triangle step”.
To determine C we have to solve the equation system

d′2 = (x − x1+x2
2 )2 + (y − y1+y2

2 )2

y = apx + bp

. (8)

Naturally, there are two solutions for (8), according to the
halfplanes defined by line (4). We have to select the solution
corresponding to the halfplane containing the concavity we
want to capture. Assuming that the boundary continues after
the cut-off snaxel A, we should be able to locate a point with
low divergence value close to snaxel A, which is neither a
snaxel itself, nor is located close to a snaxel.

For this aim, we draw a circle of radius r around A, e.g.
with r = 2 ·Dmax which is generally a good choice for our
applications. The divergence values are then checked along
the circle. If a point E is found with divergence value smaller
than θ, we check its r′ = r

2 radius neighborhood for snaxels.
If a snaxel is found then E is rejected. The procedure is
repeated until finding a pixel D, with a low divergence value
and no snaxel within the distance r′. Figure 4c depicts how
we select the new snaxel C on the halfplane to which D
belongs.

After finding which way the snake should go by selecting
the appropriate halfplane, there is still to decide how deep the
new snaxel should be placed in the concavity. We propose
two ways for that:
i) Parameter controlled distance.
In equation (7), the parameter c controls the distance of the
new snaxel from the middle of the line segment AB. In case
of deep concavities, larger c values are recommended, as with

smaller ones, more triangle steps are needed. If we have no a
priori information about the possible depth of the concavity,
we can select e.g. d′ =

√
3

2 d, d′ = d etc.
ii) Direct search for a low divergence value.
We might as well progress through line (5) until we find
a pixel which meets (2). This should indicate reaching the
deepest end of the concavity and the new snaxel can be
placed there. As we have to do the halfplane check step in
this case also, this method obviously takes more computation
time than the previous one.

After the new snaxel C is placed, the traditional GVF
snake iteration is continued to reach the object boundary
precisely.

Note that the number of required triangle steps depends
not only on the depth (Figure 5a) but also on the level of
concavities. As an illustrative example, we can think about
the Von Koch curve [4] obtained by applying a constructor
recursively. Such objects have “recursive” concavities. See
Figure 5b for an example, where two triangle steps were
applied to reach the boundary of an object having two levels
of concavity.

In our application, regarding the human body, we have
basically one level of concavity, and, therefore, we only had
to care about the concavities’ depth.

(a)

(b)

Fig. 5. Applying more triangle steps to capture a) deep concavities, b)
”recursive” concavities.

IV. EXPERIMENTAL RESULTS
Recently, we have been working in a field, where the

task is to perform object detection in infrared images. These
images are captured by firefighters during fire rescues, using
a thermal camera. As in a fire scene it is rather difficult to
predict the behavior of the intensity values (corresponding
to temperatures), we extract boundaries for detecting and
classifying objects. Therefore, the snake can be used as a
preliminary step to object recognition with finding the object
boundary. Furthermore, as some user interaction is also
allowed, the snake model becomes an even more attractive
approach, as it requires user initialization.

During our experiments, we applied the triangle step at a
different number of times. We also checked the parameter
for controlling how deep the new snaxel is placed in the



concavity. In Figure 6 the objects whose boundaries we
want to approximate are displayed in gray, the initial snake
is displayed with a dashed line, while the final snake with
a solid line, respectively. For our application we found the
following setup efficient:

1. Calculate the GVF field and perform 50 snake iterations.
2. Perform the triangle step.
3. Evolve the snake again with 30 iterations.
4. Repeat the previous two steps until the snake has reached
the boundary.

(a)

(b)

(c)

(d)
Fig. 6. Several results of the method. The original GVF snake is displayed
on the left, while our method on the right. Both procedures were run for
the same time.

V. CONCLUSIONS

The GVF snake is known to be a robust but rather slow
procedure, so we were encouraged to work with less dense
snakes and with a small number of iterations. To make the
GVF snake provide the expected results, we improved its
performance to reduce computation time. We achieved the
same (and sometimes better) results as [7] in less time (see
Table 2). With both the time and accuracy factor are being
critical, we may say this method well suits our purposes.

Our approach can be applied to other vector fields (e.g.
potential [6], distance potential [3], curvature vector flow
[5]), in case of concave objects. Moreover, the method can
be easily extended to higher dimensions.

TABLE II
COMPUTATION TIMES FOR OBJECT IN FIG. 7 (Dmax=4,

Dmin=1, c=1, IMAGE SIZE:240×240).

GVF GVF + i GVF + ii
3000 iterations 50+2×20 iterations, 50+20 iterations,
150 sec 3 sec 3 sec

Fig. 7. U-shaped object.

REFERENCES

[1] Chuang, C.H., Lie, W.N., Region Growing Based on Extended Gra-
dient Vector Flow Field Model for Multiple Objects Segmentation,
ICIP01(III: 74-77), 2001.

[2] Chuang, C.H., Lie, W.N., A Downstream Algorithm Based on Extended
Gradient Vector Flow Field for Object Segmentation, TIP (13/10), pp.
1379-1392, 2004.

[3] Cohen L. D. and Cohen I., ”Finite-element methods for active contour
models and balloons for 2-D and 3-D images,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 15, pp. 1131-1147, Nov. 1993.

[4] Crownover R. M., Introduction to Fractals and Chaos, Jones and
Bartlett Publishers International, London, England, 1995.

[5] Gil D., Radeva P., Curvature Vector Flow to Assure Convergent
Deformable Models for Shape Modelling, Lecture Notes in Computer
Science, vol. 2683, pp. 357 - 372, Jan 2003.

[6] Kass M., Witkin A., and Terzopoulos D., ”Snakes: Active contour
models,” International Journal of Computer Vision. vol. 1, no. 4, pp.
321-331, 1987.

[7] Xu C. and Prince J. L., ”Snakes, shapes, and gradient vector flow,”
IEEE Trans. Image Processing, vol. 7, pp. 359-369, Mar. 1998.

[8] Young E. C., Vector and Tensor Analysis, Marcel Dekker, New York,
1993.


