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ABSTRACT 

In this paper we provide a series of  properties that simplify the 
computation of the Hausdorff distance between graphical 
image objects represented by sets of pixels. We propose a 
simple test which allows for a given set of pixels to check 
whether it is sufficient to compute the Hausdorff distance using 
only the boundary pixels. Next, we present a method that 
allows to prune a part of the contour. We discuss the possibility 
of combining the proposed approach with other methods to 
speed-up the computations The experimental results presented 
demonstrate a considerable reduction of the computation time. 

NOTATION 

Θ – family of non-empty, closed and bounded subsets of 
a metric space 
A, B – elements of Θ 
cl(A) – closure of A 
∂ A – boundary of A 
int(A) – interior of A 
comp(A) – complement of A 
AD(r) – dilation of A with a ball with radius r 
k(x, r), K(x, r) – open and closed ball with centre x and 
radius r 
 

1. INTRODUCTION 

The Hausdorff distance between two sets A, B ∈ Θ is 
defined as: 

 dH(A, B) = max { dH+(A,B), dH-(A,B) }, (1) 

where  

 dH+(A, B) = max {d(a, B) : a ∈ A} (2) 

 dH-(A, B) = max {d(b, A) : b ∈ B}, (3) 

 d(v, W) =  min {d(v, w) : w ∈ W}. (4) 

The Hausdorff distance is very useful as a dissimilarity 
measure between graphical objects. Unlike the feature 
space methods (e.g. moment invariants, shape 
coefficients), the Hausdorff distance between two closed 
sets is zero if and only if both sets are identical. 
Moreover, any object transformation (like translation, 
rotation, scaling, or perspective projection) can be taken 
into consideration by searching for the minimum of the 
Hausdorff distance between original object and the 
transformed one over the space of transformation 
parameters. The values of transformation parameters 
which ensure the best matching can then be used for 
high-level recognition based on the relations between the 
elements of an image. Another important advantage of 
the Hausdorff distance is the possibility of using 
separately dH+ and dH- which are dissimilarity measures 
between one object and a part of another: dH+(A, B) = 0 
iff A⊂B and dH-(A, B) = 0 iff B⊂A. The separate 
consideration of dH+ and dH- is very useful when the 
segmentation is not reliable or when the object can be 
partially occluded [1], [2]. Another possibility of coping 
with partial occlusions is the application of the 
Hausdorff distance fraction, i.e. substitution for 
supremum in (2) and (3) by a quantile. Good results for 
noisy images are reported in [3].  
The main disadvantage of the Hausdorff distance is its 
computational burden. For a pair of objects represented 
by sets of pixels, in a naive approach, the distance 
between every pair of pixels (a,b)∈A×B should be 
computed. During the last decade several methods for 
speeding-up the computations have been proposed. 
Some of them are based on the approximation of objects 
by polygons. For example, a fast and simple linear-time 
algorithm for convex polygons is described in [4]. A 
more general method for arbitrary polygons is presented 
in [5].  
The aforementioned methods give only an 
approximation of the Hausdorff distance but there other 
methods that yield an exact result. The Voronoi diagram 
of the set B allows to find minimal distance from any 
point to set B in time O(log|B|) where |B| is the 



 

cardinality of the set B [6]. A very effective method of 
the Hausdorff distance calculation is the application of a 
distance transform, which pre-calculates the distances 
between every point of a specified ε-lattice and a 
model/query object and stores them in a distance matrix. 
However, this approach suffers from certain drawbacks 
like the long pre-computation time and the high memory 
requirements. Moreover, the size of distance matrix is 
fixed and if any part of the object lies outside of the 
matrix, the method does not work. A generalisation of 
the Hausdorff distance that exploits the edge direction 
information [7] requires a 3D distance transform so 
combining these two methods is not always profitable 
[8].  
It is worth noting that there exist methods to speed-up 
the computations not only for a single pair of objects at 
fixed position but also at further stages of Hausdorff-
distance-based matching, as shown in Table 1. When we 
are seeking for a minimum of the Hausdorff distance 
between one object and geometrical transformation of 
another, big parts of a transformation parameters space 
can be excluded from computations [1]. At the highest 
level of the matching process (see Table 1) metric 
properties of the Hausdorff distance can be used for a 
fast database search. Having found the distances between 
the model objects off-line, we can apply the triangle 
inequality in model object space and rule out a part of 
the database from computations [9]. The matrix of 
distances between the models can also be used for 
determining the order of database searching which yields 
quickly the model closest to the query object [10], [2].  
The method proposed here aims at the reduction of 
computations in the stage where maximum operations 
occur, a point that was not addressed in the related 
literature. In Sec. 2 we discuss on the condition that 
allows to discard the interior of a set, i.e. when the value 
of the Hausdorff distance does not change by replacing a 
set by its boundary. We propose a test based on 
morphological operations that allows to check the 
necessary and sufficient condition for matching a given 
pixel set A with arbitrary pixel set B by employing only 
the boundary of A. 
In Sec. 3 we propose a method for further computational 
complexity reductions. It is designed especially for 
contours of coherent 2-D objects represented by finite 
sets of pixels, so it can be applied as a next step of the 
method presented on Sec. 2. Since sets A and B are 
contours of graphical objects, they can be ordered so that 
every two consecutive pixels are neighbours in an 8-
connected ε-lattice. Therefore the distance between 
consecutive pixels has an upper bound and cannot be 
greater than ε 2 . The method presented in Sec. 3 
allows to calculate the exact value dH+(A, B) without 
resorting to d(a, B) for every point a ∈ A. This means 

that some parts of set A can be discarded in 
computations.  
Table 1. Locating the proposed method in the hierarchy of the 

complexity reduction methods that are appropriate for the 
several stages of the matching process. 

Stage of the  
matching process 

Method for  
complexity reduction

Find the best model in the 
database  

d. Pruning part of  
the database 

Find the transformation that 
yields the best matching 

c. Pruning part of the 
search space 

Computation of maximum:
max {d(b, A): b∈B} b. Proposed method  

Computation of minimum: 
min {d(b, a): a∈A} 

a. Voronoi 
diagram  

a’. Distance 
transform  

 
As shown in Table 1, our approach can be combined 
with existing ones, since it works at a different stage of 
the hierarchy of computations.  

2. CONTOUR-BASED MATCHING WITH THE 
HAUSDORFF DISTANCE 

In this section we discuss when the Hausdorff distance 
between two sets is  equal to the Hausdorff distance 
between their contours.  As shown in [11] for non-empty 
and closed sets their interior can always be discarded if 
both sets are convex but it is not a necessary condition. 
In this section we present a necessary and sufficient 
condition when for a given set A holds: dH-(A, B) =  dH-

(A, ∂B) for any set B and  when for a given set B holds: 
dH+(A, B) =  dH+(∂A, B) for any set A. The condition can 
be checked for every model object in the database at a 
stage of the database creation and for a query object 
before the process of its recognition. If the condition 
holds, we can discard the interior of sets and apply the 
method proposed in the Sec. 3 for a further computation 
reduction.  

2.1. Necessary and sufficient condition for computing 
the Hausdorff distance between two sets using only 
their boundaries. 

Property 1 
A set A∈Θ satisfies Property 1 if for any open ball 
k(x0,r) such that k(x0,r)  ∩ A = ∅ a curve S exists such 
that:  

P1. x0 ∈ S  
P2. ∀η>0  ∃ x ∈ S: d(x, A) > η   (i.e. S “goes to 

infinity”) 
P3. ∀ x∈S: k(x, r) ∩ A = ∅ . 

In other words, if Property 1 holds for a set, it 
guarantees that every ball can be “taken out” from every 

high 
stage 
 
 
 
low 
stage 



 

hollow in A as is depicted in Figure 1. Figure 2 
demonstrates a set that violates Property 1.  
 

 
 

Figure 1. Example of a set for which Property 1 holds. 

 

 
 

Figure 2. Example of a set which violates Property 1.  

 
Proposition 1 
For a given set A∈Θ:  dH+(B, A) = dH+(∂B, A) for every 
B∈Θ if and only if Property 1 holds for A. 
 
Proof  
1. A satisfies Property 1 ⇒ ∀ B: dH+(B, A) = dH+(∂B, A) 

We will show that if A satisfies Property 1, 
∀ b∈ int(B) ∃ b’∈ ∂B:  d(b’, A) ≥ d(b, A). The open 
ball k(b, d(b, A)) has an empty intersection with A. 
Based on Property 1 for the set A, there exists a curve 
S=S(k(b, d(b, A)) that fulfils P1-P3. The set B is 
bounded, while the curve S is not (as it fulfils P2), so 
S∩∂ B ≠ ∅. Let us denote by b’ any point belonging 
to S∩∂ B. The curve S fulfils P3, so: d(b’, A) ≥ d(b, 
A). 

2. A does not satisfy Property 1 ⇒ ∃ B: dH+(B, A) ≠ 
dH+(∂B, A) 
If the set A does not satisfy Property 1, there exists a 
ball k(x0, r) such that no curve S(k(x0, r)) fulfils P1-P3. 
Let us denote by X the set of all points that can be 
connected with x0 by a curve that fulfils P3. For all 
x’∈ ∂X: d(x’, A)=r. Let us denote by AD(ε) the dilation 
of A with a ball with radius ε. There exists ε > 0 such 
that ∀ x” ∈ ∂XD(ε): d(x”, A) < r, so the set XD(ε)

 is an 
example of such a set B, that: dH+(B, A) > dH+(∂B, A). 

♦ 
 
Let us look at Figure 2. For any closed ball Kn=kn∪∂kn 
holds: dH+(Kn, A) ≠ dH+(∂Kn, A) and the point argmax 
d(b, A): b∈Kn  is located just in the centre of the ball. 
We could ask if it is a rule, i.e. if for any set A any 

closed ball K “blocked” in its hollow (more precisely: 
closure of “blocked” open ball) can serve as an example 
of the set such that dH+(K, A) ≠ dH+(∂K, A). The answer 
is negative, in examples shown in Figure 3 dH+(K, A) is 
equal to dH+(∂K, A). However, according to Proposition 
1, a set B such that dH+(B, A) ≠ dH+(∂B, A) exists. In 
both cases shown in Figure 3, B is such a set.  
 

           
            a              b 

Figure 3. For a ball K “blocked” in a hollow in A: dH+(K, A) = 
dH+(∂K, A) but for B: dH+(B, A) ≠ dH+(∂B, A). 

2.2. Test for validation Property 1 and its application 
for shape matching 

Next, we prove a proposition that allows to check if the 
given set A satisfies Property 1.  
Let us denote by AD(r) the dilation of the set A with a ball 
with radius r as a structuring element, i.e.: 
AD(r) = {x: K(x,r) ∩ A ≠ ∅}, in other words: int(AD(r)) = 
{x: k(x,r) ∩ A ≠ ∅}. 
 
Proposition 2 
A set A∈Θ satisfies Property 1 if and only if for any r 
the set comp(AD(r)) is connected. 
 
Proof 
1. ∀ r: comp(AD(r)) is connected ⇒ A has Property 1 

Let us take any ball k(x0,r) such that k(x0,r) ∩ A  = ∅. 
It means that x0 ∉  int(AD(r)). Since the set 
comp(int(AD(r))) is connected and unbounded, there 
exists a curve S such that: 

P4. x0 ∈ S, 
P5. ∀η>0  ∃ x ∈ S: d(x, A) > η 
P6. ∀ x∈S:  x ∈ comp(int(AD(r))). 

Properties P4 and P5 are identical with P1 and P2 and 
P3 is equivalent to P6. 

 
2. ∃ r: comp(AD(r)) is not connected ⇒ The set A does 

not satisfy Property 1 
If the set A satisfies Property 1, P1-P3 or equivalently 
P4-P6 must be fulfilled. The set A is bounded and the 
set comp(AD(r)) is not connected so at least one of its 
connected parts is bounded. For any x0 belonging to 
this part k(x0, r) ∩ A = ∅ and no curve S(k(x0, r)) 
exists that fulfils P4-P6. 

♦ 

A 

A 
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A
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B B 
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3. CONTOUR PRUNING 

3.1 Mathematical basis of the proposed contour 
pruning method 

Subsequently we prove a proposition that is used in our 
contour pruning method. The proof is based on triangle 
inequalities. 
 
Proposition 3 
Given are two sets A and B and two points k, l in A. Let 
 

 δ = d(k, l) (5) 
 

 d1 = d(k, B) = min d(k, p),  (6)  
                p∈B           

 d2 = d(l, B) = min d(l, p).  (7) 
                p∈B           

We claim that: 
 |d1-d2| ≤ δ. (8) 

 
B   A 

Figure 4. Notation for Proposition 3. 

Proof 
 
Eq. (6) implies: 
 d1 ≤ d(k, l’)    ∀ l’∈ B. (9) 
Eq. (7) implies: 

 d2 ≤ d(l, k’)    ∀ k’∈ B. (10) 

The triangle inequality implies: 

 d(k, l’) ≤ δ + d2  (11) 

 d(l, k’) ≤ δ + d1 (12) 

From (9) and (11) we have: 

 d1 ≤ δ + d2 ≡ d1 - d2 ≤  δ  (13) 

and from (10) and (12):  

 d2 ≤ δ + d1 ≡ d2 – d1 ≤  δ (14) 

From (13) and (14) it follows that: 

|d1-d2| ≤ δ 
♦ 

 
Let us assume that we have checked the distance to the 
set B for two points am and an that belong to the set A 
(see Figure 5) and let us denote:  
 

 d(am, B)-d(an, B) = r > 0.  (15) 
 
On the basis of Proposition 3 it is known that for every 
element ai that belongs to r-neighbourhood of an: 
 

 | d(an, B) - d(ai, B) | ≤ r,  (16) 

From (15) and (16) follows that: 
 

 d(ai, B) ≤ d(am, B).  (17) 
 

As a consequence of (17) all points lying within the r-
neighbourhood of an can be eliminated from 
computations. 
 

 
           B   A 

Figure 5. The knowledge of distances d(am, B) and d(an, B) that 
satisfy (15) enables the elimination of Hausdorff distance 
calculation for pixels in a ball K(an, d(am, B) - d(an, B)). 

3.2. An application to contour recognition 

In the pre-processing stage both contours to be compared 
must be ordered so that consecutive pixels ai,, ai+1 are 
neighbours on an 8-connected ε-grid. In a typical 
application the query contour is compared with many 
contours stored in a database which can be ordered off-
line during database creation. Since the contours are 
closed, for i greater that the list size |A|: ai = arem(i, |A|), 
where rem is remainder after division. The algorithm 
works as follows: 

Algorithm 1 
Step 1. Choose an arbitrary integer N > 1. The influence 

of N on the algorithm performance will be 
discussed in the next section. 

Step 2. Pick up N pixels ap(1),…,ap(N) placed evenly 
along the contour A and calculate their distances 
to the contour B. The largest distance will be 
referred to as dmax, as shown in Figure 6. 

Step 3. For each pixel ap(i), i ∈ 1, …, N  rule out from 
further calculations the pixels with subscripts 

  k’ 
 
 
 
 l’ 

 d1 
 

 d2 
 

k 
 

l  δ 
 

an 

am 

ai 



 

between p(i)-floor(ri / 2 ) and p(i)+floor(ri 

/ 2 ), where ri= dmax – d(ap(i), B). It is obvious 
that all these pixels belong to ri-neighbourhood 
of ap(i). 

Step 4. Calculate the distance to contour B for all the 
reminding pixels of contour A. The largest of 
them is dH+(A, B).  

dH-(A, B) is calculated in the same way. 
 
 

       
B    A 

 

Figure 6. Illustration of Algorithm 1 for N=4.  

3.3. Efficiency  

The efficiency of the method depends on several factors: 
1. The value of N (i.e. number of pixels taken from the 

contour A for which the distance from contour B is 
calculated in the preliminary stage). By increasing N 
we reduce the computation burden in Step 4 but 
Steps 2 and 3 become more time-consuming (see also 
next section).  

2. Shape and relative location of objects. In the 
situation depicted in Figure 7b, the calculation time 
cannot be reduced because for every point of ∂A the 
distance to contour ∂B is identical. Since the 
proposed method is used for finding the location 
which gives a minimal Hausdorff distance, the 
efficiency changes during the optimisation process. 

 
 
 
 
 
 
 
 

a       b 
Figure 7. For different locations of the same objects the 

efficiency of the proposed method may vary considerably. 

 

3. Number of contour pixels. The method is effective 
if the cost of distance computations from a single 
pixel in A to contour B is high, in other words if 
contour B consists of many pixels. In the case of long 
contours, it is recommended for every pixel ap(i) to 
rule out all pixels lying is its ri-neighbourhood by 
checking d(ak, ap(i)) for every pixel ak∈ A 
(modification of Step 3). In this case the contour 
ordering would be used only for placing evenly 
pixels ap(i). However, random placing could also be 
applied, thus contour pixels can be given in any 
order.  

4. Choice of pixels ap(i). We recommend the choice of 
ap(i) in equal intervals. However, also the selection of 
the starting pixel has an influence on the computation 
time. In the situation depicted in Figure 8a, the 
method will work very effectively but if pixels ap(1) 
and ap(2) will be chosen as shown in Figure 8b, no 
pixel of contour B can be pruned. In the proposed 
algorithm, by default, ap(1)=a1, that is we start form 
the first contour pixel.  When N increases, the choice 
of the starting pixel becomes less important because 
varying the starting pixel causes only small 
fluctuations of the computation time. 

 
 

 A      B                A         B 
       

      a    b 

Figure 8. The computation time depends on the choice of pre-
selected pixels.  

4. EXPERIMENTS 

The test proposed in Sec. 2 has been implemented in 
Matlab. In case of test, the speed is not very important as 
it is designed for processing a model object database off-
line and making a single query processing before 
recognition. The method described  in Sec. 3 has been 
implemented in C++ as a Matlab MEX-file.  
For experiments we used a database of 70 objects that 
correspond  to the shape of  Greek islands.  10 among 
the 70 objects were chosen randomly  and slightly 
deformed in order to serve as query objects.  Examples 
of  the objects included in the database of Greek islands 
are shown in Figure 9. 

ap(3) - winner

ap(1) 

dmax 

ap(2) 

ap(4) 

 B 
A 

 A   B 



 

 
Figure 9. For these six islands considering only contour may 

lead to an error. All database consists of 70 objects. 

The number of pixels of objects varies from 202 to 
28638 (4333 in average) and the number of pixels of 
contours – from 60 to 1116 (270 in average).  
The first series of experiments aims at determining the 
best value of the parameter N in Algorithm 1. From  the 
time needed to recognize query objects for various 
values of N, we have found that the distance calculation 
for N=40 pixels in the preliminary stage of the algorithm 
is appropriate. In Figure 10 an exemplary relationship is 
plotted between N and time needed to perform 
recognition for the first query object (q1). Recognition 
means matching  a query object with every object in the 
model object database whereas  matching aims to find 
the smallest Hausdorff distance between all possible 
transformations of the query object and a model object. 
The following transformations were considered:  
translation, rotation, and scaling. Horizontal line 
indicates computation time without speeding-up. From 
the inspection of Figure 10 one can see that the 
application of proposed method can reduce the 
computation time 3-3.5 times. 
 

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

 
Figure 10. Recognition time as a function of N for query object 

q1. The horizontal line indicates computation time  
for all contour pixels.   

In the subsequent experiments we try to estimate 
reduction of the computation time offered by our 
method. For 10 query objects we have recorded time of 
recognition process.  

In Figure 11 for every query three values in logarithmic 
scale are depicted. The smallest value is the recognition 
time when Algorithm 1 is applied regardless if objects 
possess Property 1. This approach may lead to errors if 
the Hausdorff distance is realised on an interior point of 
one of sets being matched. The second value is the time 
with application of Algorithm 1 only if it can be done 
without any risk of error, i.e. if Property 1 holds. It is 
worth noting that for 6 among the 70 objects in the 
database and for 1 among 10 query objects Property 1 
does not hold. Consequently, while matching these 
objects with another object B, all pixels of the object B 
should be considered. The third, largest value is the time 
needed when the Hausdorff distances are computed in a 
straightforward manner by considering all the pixels in 
calculations. The values presented in histogram are listed 
in columns: F, G and C of Table 2. In the latter table, 
recognition time values when calculations are restricted 
to contours but without application of Algorithm 1 are 
listed in columns D and E. 
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Figure 11. Recognition time for 10 query objects. 
 

Table 2 Time of recognition for different  
speeding-up actions. 

Query  Overall time for recognition [sec]; calculations: 
restricted to contours:  restricted to parts of 

contours (Algor. 1): 
 

 
A 

number

 
 

B 
name 

 
 

C 
for all 
pixels 
 

D 
always – 
with error 
risk  

E 
if Property 
1 holds – 
without 
error risk  

F 
always – 
with error 
risk  

G 
if Property 
1 holds – 
without 
error risk  

q1 (4) c_antiparos 2291.1 20.3 68.0 8.0 26.9
q2 (7) c_giaros 1470.5 16.1 53.9 7.0 23.4
q3 (17) c_rithnos 10614.9 34.2 114.6 10.9 36.7
q4 (31) d_leros 3343.2 33.8 1119.3 11.1 1119.3
q5 (34) d_nissiros 2862.5 16.8 56.3 7.7 25.8
q6 (43) i_meganisi 1303.8 20.0 67.0 7.5 25.1
q7 (53) s_skiathos 4991.4 23.3 78.2 8.8 29.5
q8 (62) sa_poros 1555.4 16.5 55.3 7.4 24.8
q9 (63) sa_salamina 5974.7 39.9 133.9 12.2 41.0
q10 (66) sg_elafonisos 1364.4 15.1 50.5 6.9 23.2
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5. CONCLUSION 

In this paper we have presented a method for speeding-
up the exact computation of Hausdorff distance between 
a pair of graphical objects, represented by finite sets of 
pixels. The method can be combined with existing ones, 
which are applicable independently at lower or higher 
stages of matching process (cf. Table 1) in order to 
speed-up the time needed to perform shape recognition. 
We have formulated and proved several propositions that 
enable testing whether we can consider only the objects 
contours in calculation of the Hausdorff distance. We 
have also proposed a novel method that allows to 
eliminate part of contours from computations. We have 
demonstrated by experiments the savings offered by the 
proposed methods. 
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