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ABSTRACT

A novel class of Learning Vector Quantizers �LVQs

based on multivariate order statistics is proposed in
order to overcome the drawback that the estima�
tors for obtaining the reference vectors in LVQ do
not have robustness either against erroneous choices
for the winner vector or against the outliers that
may exist in vector�valued observations� The per�
formance of the proposed variants of LVQ is demon�
strated by experiments� In the case of marginal me�
dian LVQ� its asymptotic properties are derived as
well�

INTRODUCTION

Neural networks �NN
 is a rapidly expanding re�
search �eld which attracted the attention of scien�
tists and engineers in the last decade� A large va�
riety of arti�cial neural networks has been devel�
oped based on a multitude of learning techniques
and having di�erent topologies ���� One prominent
example of neural networks is the Learning Vector
Quantizer �LVQ
� It is an autoassociative nearest�
neighbor classi�er which classi�es arbitrary patterns
into classes using an error correction encoding pro�
cedure related to competitive learning �
�� In order
to make a distinction between the �standard
 LVQ
algorithm and the proposed variants that are based
on multivariate order statistics� the LVQ algorithm
will be called linear LVQ algorithm hereafter�
Let us assume a sequence of vector�valued obser�

vations x�t
 � IRp and a set of variable reference
vectors fwi�t
�wi � IR

p� i � 
� �� � � � � Kg� Let wi��

be randomly initialized� Competitive learning tries
to �nd the best�matching reference vector wc�t
 to
x�t
 �i�e�� the winner
 where c � argmini k x�wi k
with k � k denoting the Euclidean distance between
any two vectors� This vector is updated and the
process is repeated� After a large number of itera�
tions� the di�erent reference vectors wi tend to be
placed into the input space IRp in such a way that
they approximate the probability density function
�pdf
 f�x
 in the sense of some minimal residual
error � �

R
X
k x � wc k� f�x
 dx where X is the

domain of the input vector�valued observations and
dx is the volume di�erential in the space IRp� If the
stochastic�gradient�descent algorithm �	� is applied
to the minimization of � in the wc space and the
weight vectors are updated as blocks concentrated
around the winner� the following recursive relations
result�

wi�t � 

 � wi�t
 � ��t
�x�t
�wi�t
� �i � Nc�t


wi�t � 

 � wi�t
 �i �� Nc�t
 �



where ��t
 is the adaptation step and Nc�t
 denotes
a neighborhood around the winner� In the follow�
ing� we use the notation n instead of t to denote
discrete events� It can easily be seen that the ref�
erence vector for each class i � 
� � � � � K at time
n � 
 is a linear combination of the input vectors
x�j
 j � �� � � � � n that have been assigned to class
i� Moreover� it can be shown that in the special
case of only one class and the adaptation step se�
quence ��n
 � 
��n � 

� the winner vector is the
arithmetic mean of the observations that have been
assigned to the class �i�e�� the maximum likelihood
estimator of location
� Neither in the case of mul�
tiple classes that are normally distributed nor in
the case of non�Gaussian multivariate data distri�
butions the linear LVQ is the optimal estimator of
the cluster means� In general� linear LVQ and its
variations su�er from the following drawbacks�


� They do not use optimal estimators for obtain�
ing the reference vectors wi� i � 
� � � � � K that
match the pdf fi�x
 of each class i � 
� � � � � K�

�� They do not have robustness against erroneous
choices for the winner vector� since it is well
known that linear estimators have poor robust�
ness properties ����

	� They do not have robustness against the outliers
that may exist in the vector observations�

In order to overcome these problems� we propose a
variant of Learning Vector Quantizer that is based
on multivariate order statistics ��� ��� The perfor�
mance of the proposed variants of LVQ is demon�
strated by experiments� In the case of marginal me�
dian LVQ� its asymptotic properties are derived as
well�
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LEARNING VECTOR QUANTIZERS BASED ON
MULTIVARIATE DATA ORDERING

There is no unambiguous� universally agreeable
total ordering of N p�variate samples x�� � � � �xN
where xi � �x�i� x�i� � � � � xpi


T � i � 
� � � � � N � The
following so�called sub�ordering principles are dis�
cussed in ���� marginal ordering� reduced �aggregate�
ordering� partial ordering� and conditional �sequen�
tial� ordering� In marginal ordering� the multivari�
ate samples are ordered along each one of the p�
dimensions�

xi��� � xi��� � � � �� xi�N� i � 
� � � � � p ��


i�e�� the sorting is performed in each channel of
the multichannel signal independently� The i�
th marginal order statistic is the vector x�i� ��
x��i�� x��i�� � � � � xp�i�

�T
� The marginal median has

the following de�nition�

xmed �

������
�����

�
x������� � � � � xp�����

�T
for N � �� � 
�

x�����x������
� � � � � �

xp����xp�����
�

�T
for N � ���

�	

It can be used in the following way in order to de�
�ne the marginal median LVQ� Let us denote by
Xi�n
 the set of the vector observations that have
been assigned to each class i� i � 
� � � � � K until time
n � 
� We �nd at time n the winner vector wc�n

that minimizes k x�n
�wi�n
 k� i � 
� � � � � K� The
marginal median LVQ �MMLVQ
 updates the win�
ner reference vector as follows�

wc�n� 

 � median fx�n
�Xc�n
g ��


The median operation is given by �	
� Thus� all past
class assignment setsXi�n
� i � 
� � � � � K are needed
for MMLVQ� MMLVQ needs the calculation of the
median of data sets of ever increasing size� as can
be seen from ��
� This may pose severe computa�
tional problems for relatively large n� However� for
integer�valued data� a modi�cation of the running
median algorithm proposed by Huang et al� ��� can
be devised to facilitate greatly median calculations
by exploiting the fact that the marginal median of
the already assigned samples Xi�n
 is known�
Another de�nition of the multichannel median

�based on R�ordering principles
 is the so�called vec�
tor median proposed in ���� The vector median is the
observation that has the minimum distance from all
the remaining observations� i�e��

NX
i��

jxi � xmedj �
NX
i��

jxi � xj j j � 
� � � � � N� ��


The vector median LVQ �VMLVQ
 uses the follow�
ing formula to update the winner vector wc�n
 at
step n�

wc�n� 

 � vector median fx�n
�Xc�n
g ��


where Xi�n
 is again the set of vector�valued ob�
servations that have been assigned to class i� i �

� � � � � K so far and x�n
 is the current observa�
tion� The vector median operator in the previous
expression is the one de�ned in ��
� Vector median
LVQ keeps tract of all its history and therefore all
data samples have equal contribution to the refer�
ence vector update procedure� In the case of non�
stationary data� we can evaluate the vector median
using a moving window to discard the older samples
as new observations become available�
Since the reference vector update is restricted to

belong to fx�n
 � Xc�n
g� the VMLVQ trajectory
is more smooth� in general� than the MMLVQ or
the linear LVQ weight trajectory� The evaluation of
the vector median of a data set is a rather compu�
tationally intensive operation ��
 since it requires
the evaluation of n sums� each containing �n � 


terms of the form jxj � xij and also the evaluation
of the minimum of n values� In the case of the vec�
tor median LVQ� for each time instant n� we have
to calculate the vector median ��
� The fact that
the vector median of the data in Xc�n
 has already
been evaluated can be exploited in order to speed
up the computations�
The marginal weighted median LVQ �MWMLVQ


can be de�ned as follows� Let us denote by

wi�n
 � �wi��n
� wi��n
� � � � � wip�n


T ��


the winner vector� i�e�� c � i� In MWMLVQ� the el�
ements of the winner vector are updated as follows�

wij�n� 

 � median fCi� � xj�n
� � � � � Cin � xj��
g
��


where �Ci�� Ci�� � � � � Cin

T is the vector of the dupli�

cation coe�cients for the i�th class� The duplication
coe�cients can be chosen in such a way so that they
weigh heavily the desired section of the observation
data �i�e�� the new observations or the old ones
� If
a weight Cil is zero� this means that the correspond�
ing sample x�n�l
 has not been assigned to the i�th
class�

ASYMPTOTIC PROPERTIES OF MARGINAL
MEDIAN LEARNING VECTOR QUANTIZER

In this section� the asymptotic properties of MM�
LVQ are studied� Due to lack of space� we shall
sketch only the steps of the mathematical analysis
and we shall present the basic conclusions� First�
the expected stationary state of the MMLVQ is de�
rived and is compared to the expected stationary
state of the linear LVQ� Since both the linear LVQ

�



and the MMLVQ operate on each dimension inde�
pendently� an 
�d contaminated Gaussian model

f�x
 � �N�m�� 	
 � �
� �
N�m�� 	
 ��


is considered� To this end� the thresholds deter�
mined by the linear LVQ and the MMLVQ at the
equilibrium for discriminating the two input data
classes must be known� A very simple algorithm
for solving the set of equations that de�ne implic�
itly the stationary state of the linear LVQ and the
MMLVQ is developed �
��� In addition� the thresh�
olds determined by the linear LVQ and the MMLVQ
have been compared to the threshold predicted by
the statistical detection theory� i�e�� the threshold
that minimizes the probability of false classi�cation
���� The bias introduced by the linear LVQ and the
MMLVQ in estimating the unconditional mean for
the dominating cluster in the contaminated Gaus�
sian model ��
 is depicted in Figure 
 for 	 � 	� We
have also included the conditional mean that corre�
sponds to the decision region for the dominating
cluster that is predicted by the statistical detection
theory� In other words� we have plotted the follow�
ing quantities�

j w� �m� j for � � ���� and
j w� �m� j for � 
 ��� �
�


versus �� It is seen that the MMLVQ outperforms
the linear LVQ with respect to the bias�
From Figure 
� it is evident that both the linear

LVQ as well as the MMLVQ are not unbiased esti�
mators of the data cluster means� Accordingly� the
asymptotic variance V �T� F 
� T � LVQ� MMLVQ
de�ned by�

V �T� F 
 �
Z
IF�x� T� F 
�f�x
dx �




where IF�x� T� F 
 is the in�uence function of T
at F ��� �� does not take into account the bias in�
troduced by each estimator� since it is simply the
variance of the random variable

p
n�Tn � T �F 



that is normally distributed as n 	 
� Observe
that the asymptotic variance of the estimator T
at model F is essentially the upper bound of its
variance� i�e�� V �T� F 
 � maxn E

�
�Tn � T �F 

�

	
�

E
�
�Tn � T �F 

�

	 jn��� Therefore� the asymptotic
relative e�ciency �ARE
 of LVQ and MMLVQ de�
�ned by�

ARE�MMLVQ� LVQ
 �
V �LVQ� F 


V �MMLVQ� F 

�
�


is not appropriate for comparing the performance
of the two estimators� We propose the following
modi�ed ARE�

gARE�MMLVQ� LVQ
 �
maxn E

�
�LVQn �M
�

	
maxn E ��MMLVQn �M
��

�
	


where M � �m� j � � � jmK

T is the vector of the

unconditional means to be estimated� The modi�ed
ARE �
	
 has been evaluated for the distribution
model ��
 under study� In Figure �� the modi�ed
ARE is plotted for several � � ����� ���� and 	� It
can be seen that the performance of the MMLVQ is
improved as 	 increases� However� even in this case�
linear LVQ is better than the MMLVQ with respect
to the mean�squared estimation error� In the case
of a contaminated Laplacian distribution model� it
can be shown that MMLVQ outperforms the linear
LVQ not only with respect to the bias� but also with
respect to the mean�squared estimation error�

EXPERIMENTAL RESULTS

The performance of the proposed order statistics
LVQs has been tested on a two�dimensional sam�
ple set that is described by the probability density
function of the form

f�x�� x�
 � p U����� ���� ���� ���
� �
� p
 �
� �� N��� �� 
� 
� �
 �

� �
� �
N�
�� 
�� 
� 
� �
� �
�


where U����� ���� ���� ���
 denotes the pdf of uni�
formly distributed outliers in the domain ���� ����
���� ��� and N�mi�� mi�� 	i�� 	i�� r
 denotes a two�
dimensional Gaussian distribution with mean mij

and standard deviation 	ij along each dimension j
�j � 
� �
 and correlation coe�cient r� Such a data
set having p � ��� and � � ��� is shown in Figure 	a�
together with the trajectories of the weights deter�
mined by the marginal median LVQ algorithm� It
must be stressed that this data set is heavily cor�
rupted� It is clear that the MMLVQ converges close
the correct solution� The VMLVQ with the same
initial weights has also converged close to the cluster
means on this data set as can be seen in Figure 	b�
On the contrary� the linear LVQ does not converge
to the correct solution in this case� as can be seen
in Figure 	c�
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