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ABSTRACT

A novel class of Learning Vector Quantizers (LVQs)
based on multivariate order statistics is proposed in
order to overcome the drawback that the estima-
tors for obtaining the reference vectors in LVQ do
not have robustness either against erroneous choices
for the winner vector or against the outliers that
may exist in vector-valued observations. The per-
formance of the proposed variants of LVQ is demon-
strated by experiments. In the case of marginal me-
dian LVQ, its asymptotic properties are derived as
well.

INTRODUCTION

Neural networks (NN) is a rapidly expanding re-
search field which attracted the attention of scien-
tists and engineers in the last decade. A large va-
riety of artificial neural networks has been devel-
oped based on a multitude of learning techniques
and having different topologies [2]. One prominent
example of neural networks is the Learning Vector
Quantizer (LVQ). It is an autoassociative nearest-
neighbor classifier which classifies arbitrary patterns
into classes using an error correction encoding pro-
cedure related to competitive learning [1]. In order
to make a distinction between the (standard) LVQ
algorithm and the proposed variants that are based
on multivariate order statistics, the LVQ algorithm
will be called linear LVQ algorithm hereafter.

Let us assume a sequence of vector-valued obser-
vations x(t) € IRP and a set of variable reference
vectors {w;(t);w; € IRP,i =1,2,..., K}. Let w;(0)
be randomly initialized. Competitive learning tries
to find the best-matching reference vector w.(t) to
x(t) (i.e., the winner) where ¢ = argmin; || x — w; ||
with || - || denoting the Euclidean distance between
any two vectors. This vector is updated and the
process is repeated. After a large number of itera-
tions, the different reference vectors w; tend to be
placed into the input space IRP in such a way that
they approximate the probability density function
(pdf) f(x) in the sense of some minimal residual

error ¢ = [y || x = w. ||* f(x)dx where X is the
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domain of the input vector-valued observations and
dx is the volume differential in the space IRP. If the
stochastic-gradient-descent algorithm [3] is applied
to the minimization of ¢ in the w. space and the
weight vectors are updated as blocks concentrated
around the winner, the following recursive relations
result:

wi(t+1) wi(t) + a(t)[x(t) — w;(t)] VieN(t)
wi(t+1) w;(t) Vi d N.(1) (1)
where a(t) is the adaptation step and N.(t) denotes
a neighborhood around the winner. In the follow-
ing, we use the notation n instead of ¢ to denote
discrete events. It can easily be seen that the ref-
erence vector for each class ¢ = 1,..., K at time
n + 1 is a linear combination of the input vectors
x(j) 7 = 0,...,n that have been assigned to class
t. Moreover, it can be shown that in the special
case of only one class and the adaptation step se-
quence a(n) = 1/(n + 1), the winner vector is the
arithmetic mean of the observations that have been
assigned to the class (i.e., the maximum likelihood
estimator of location). Neither in the case of mul-
tiple classes that are normally distributed nor in
the case of non-Gaussian multivariate data distri-
butions the linear LVQ is the optimal estimator of
the cluster means. In general, linear LVQ and its
variations suffer from the following drawbacks:

1. They do not use optimal estimators for obtain-
ing the reference vectors w;, ¢ = 1,..., K that
match the pdf fi(x) of each class i =1,..., K.

2. They do not have robustness against erroneous
choices for the winner vector, since it is well
known that linear estimators have poor robust-
ness properties [4].

3. They do not have robustness against the outliers
that may exist in the vector observations.

In order to overcome these problems, we propose a
variant of Learning Vector Quantizer that is based
on multivariate order statistics [6, 5]. The perfor-
mance of the proposed variants of LVQ is demon-
strated by experiments. In the case of marginal me-
dian LVQ, its asymptotic properties are derived as
well.
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LEARNING VECTOR QUANTIZERS BASED ON
MULTIVARIATE DATA ORDERING

There is no unambiguous, universally agreeable
total ordering of N p-variate samples xy,...,Xn
where x; = (214, 22, . . .,xpi)T, t=1,...,N. The
following so-called sub-ordering principles are dis-
cussed in [6]: marginal ordering, reduced (aggregate)
ordering, partial ordering, and conditional (sequen-
tial) ordering. In marginal ordering, the multivari-
ate samples are ordered along each one of the p-
dimensions:

i=1,...,p (2)

i.e., the sorting is performed in each channel of
the multichannel signal independently. The <-
th marginal order stafistic is the vector x(; =

(xl(i)v Lo(d)s =+ xp(z))
the following definition:

T
. The marginal median has

T
(xl(u—l—l)v ceey xp(l/-l—l)
_ for N=2v4+1
e (x1<”>+9”1<'f+1> o) +pvi1) | T
5 ey 5
for N = 2v.

(3)
It can be used in the following way in order to de-
fine the marginal median LV(). Let us denote by

X(n) the set of the vector observations that have

been assigned to each class ¢,¢ = 1,..., K until time
n — 1. We find at time n the winner vector w.(n)
that minimizes || x(n) —w;(n) ||,i=1,..., K. The

marginal median LVQ (MMLVQ) updates the win-
ner reference vector as follows:

w.(n + 1) = median {x(n) U X.(n)} (4)

The median operation is given by (3). Thus, all past
class assignment sets X;(n),7 = 1,..., Il are needed
for MMLVQ. MMLVQ needs the calculation of the
median of data sets of ever increasing size, as can
be seen from (4). This may pose severe computa-
tional problems for relatively large n. However, for
integer-valued data, a modification of the running
median algorithm proposed by Huang et al. [7] can
be devised to facilitate greatly median calculations
by exploiting the fact that the marginal median of
the already assigned samples X;(n) is known.

Another definition of the multichannel median
(based on R-ordering principles) is the so-called vec-
tor median proposed in [9]. The vector median is the
observation that has the minimum distance from all
the remaining observations, i.e.:

N N
Z|Xi_xmed| < Z|Xi_xj| ]: 17---7N- (5)
=1 =1

The vector median LVQ (VMLVQ) uses the follow-
ing formula to update the winner vector w.(n) at
step n:

w.(n + 1) = vector median {x(n) U X.(n)} (6)

where X;(n) is again the set of vector-valued ob-
servations that have been assigned to class ¢, ¢ =
1,..., K so far and x(n) is the current observa-
tion. The vector median operator in the previous
expression is the one defined in (5). Vector median
LVQ keeps tract of all its history and therefore all
data samples have equal contribution to the refer-
ence vector update procedure. In the case of non-
stationary data, we can evaluate the vector median
using a moving window to discard the older samples
as new observations become available.

Since the reference vector update is restricted to
belong to {x(n)U X.(n)}, the VMLVQ trajectory
is more smooth, in general, than the MMLVQ or
the linear LVQ weight trajectory. The evaluation of
the vector median of a data set is a rather compu-
tationally intensive operation (5) since it requires
the evaluation of n sums, each containing (n — 1)
terms of the form |x; — x;| and also the evaluation
of the minimum of n values. In the case of the vec-
tor median LVQ, for each time instant n, we have
to calculate the vector median (6). The fact that
the vector median of the data in X.(n) has already
been evaluated can be exploited in order to speed
up the computations.

The marginal weighted median LVQ (MWMLVQ)

can be defined as follows. Let us denote by

wi(n) = (wia(n), wiz(n), - wi(n)"(7)

the winner vector, i.e., ¢ = 2. In MWMLVQ), the el-
ements of the winner vector are updated as follows:

wij(n+ 1) = median {Cyp o zj(n),...,Cy o z;(0)}

(8)
where (Cio,Ci1, .. .,Cm)T is the vector of the dupli-
cation coefficients for the ¢-th class. The duplication
coefficients can be chosen in such a way so that they
weigh heavily the desired section of the observation
data (i.e., the new observations or the old ones). If
a weight (' is zero, this means that the correspond-
ing sample x(n—1) has not been assigned to the i-th
class.

ASYMPTOTIC PROPERTIES OF MARGINAL
MEDIAN LEARNING VECTOR QUANTIZER

In this section, the asymptotic properties of MM-
LVQ are studied. Due to lack of space, we shall
sketch only the steps of the mathematical analysis
and we shall present the basic conclusions. First,
the expected stationary state of the MMLVQ is de-
rived and is compared to the expected stationary
state of the linear LVQ. Since both the linear LVQ



and the MMLVQ operate on each dimension inde-
pendently, an 1-d contaminated Gaussian model

f(x):€N(m170)+(1_€)N(m27U) (9)
is considered. To this end, the thresholds deter-
mined by the linear LVQ and the MMLVQ at the
equilibrium for discriminating the two input data
classes must be known. A very simple algorithm
for solving the set of equations that define implic-
itly the stationary state of the linear LVQ and the
MMLVQ is developed [10]. In addition, the thresh-
olds determined by the linear LVQ and the MMLVQ
have been compared to the threshold predicted by
the statistical detection theory, i.e., the threshold
that minimizes the probability of false classification
[8]. The bias introduced by the linear LVQ and the
MMIVQ in estimating the unconditional mean for
the dominating cluster in the contaminated Gaus-
sian model (9) is depicted in Figure 1 for o = 3. We
have also included the conditional mean that corre-
sponds to the decision region for the dominating
cluster that is predicted by the statistical detection
theory. In other words, we have plotted the follow-
ing quantities:

| Wy — mg | for ¢ < 0.5, and (10)
|wy —my|  fore>0.5

versus €. It is seen that the MMLVQ outperforms
the linear LVQ with respect to the bias.

From Figure 1, it is evident that both the linear
LVQ as well as the MMLVQ are not unbiased esti-
mators of the data cluster means. Accordingly, the
asymptotic variance V(T,F), T = 1LVQ, MMLVQ
defined by:

V(T,F) = / F(x; T, F2f(x)dx (1)
where IF(x; T, F') is the influence function of T’
at I [4, 5] does not take into account the bias in-
troduced by each estimator, since it is simply the
variance of the random variable /n(T, — T(F))
that is normally distributed as n — oo. QObserve
that the asymptotic variance of the estimator T
at model F is essentially the upper bound of its
variance, i.e., V(T, F) = max, E [(T, — T(F))?*] =
E[(T, —T(F))* |n=1. Therefore, the asymptotic
relative efficiency (ARE) of LVQ and MMLVQ de-
fined by:

V(LVQ, F)
V(MMLVQ, F) (12)

is not appropriate for comparing the performance
of the two estimators. We propose the following

modified ARE:

ARE(MMLVQ, LVQ) =

ARE(MMIVQ, 1vQ) = % P [(LVQ, — M)’

max,, E[(MMLVQ,, — M)?]
(13

where M = (my | ...]| mK)T is the vector of the
unconditional means to be estimated. The modified
ARE (13) has been evaluated for the distribution
model (9) under study. In Figure 2, the modified
ARE is plotted for several ¢ € [0.2, 0.8] and o. It
can be seen that the performance of the MMLVQ is
improved as o increases. However, even in this case,
linear LVQ is better than the MMLVQ with respect
to the mean-squared estimation error. In the case
of a contaminated Laplacian distribution model, it
can be shown that MMLVQ outperforms the linear
LVQ not only with respect to the bias, but also with
respect to the mean-squared estimation error.

EXPERIMENTAL RESULTS

The performance of the proposed order statistics
LVQs has been tested on a two-dimensional sam-
ple set that is described by the probability density
function of the form

f(xla $2) = p U([_57 20]7 [_57 20]) + (1 - p) '
[e N(5,5; 1, 1; 0) +

+ (1—¢)N(10,10; 1, 1; 0)] (14)
where U([—5,20],[—5,20]) denotes the pdf of uni-
formly distributed outliers in the domain [—5,20] X
[—5,20] and N (m1, m2; 041,042; 7) denotes a two-
dimensional Gaussian distribution with mean m;;
and standard deviation o;; along each dimension j
(j = 1,2) and correlation coefficient r. Such a data
set having p = 0.2 and ¢ = 0.5 is shown in Figure 3a,
together with the trajectories of the weights deter-
mined by the marginal median LVQ algorithm. It
must be stressed that this data set is heavily cor-
rupted. It is clear that the MMLVQ converges close
the correct solution. The VMIVQ with the same
initial weights has also converged close to the cluster
means on this data set as can be seen in Figure 3b.
On the contrary, the linear LVQ does not converge
to the correct solution in this case, as can be seen
in Figure 3c.
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