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ABSTRACT

A new method is presenied in the texiune analysis ana
segmentation of geophysical images. It is based un the detec
don of the seismic horizons and on the caiculation of their
features (e.g. length, average reflection srength, sipnature;.
These features represent the texture of the sewsmic mage.
The horizons are clustered into clisses according one or J
muititude of their fearres. Euch cluster represents a distine:
iexture characteristic of the scismic unage. After this tmnad
clustering, the points of cach horizon are used as sceds tor
geophysical image segmentation. All pixels in the sersmi
imape are clustered in those clusses, uccording W thetr
peometric proximity 10 points lying on classified honzons,
Thus the entire seismic image is classificd according 1o Jdit-
ferent seismic texture patterns. Two new methods are
presented  for pixel clustering  acconding 1o the ther
geometric proximity to reference points. The hrst one
hased on Yoronoi tesselation and on mathematcal nmecpho!
ogy. The second one is based on . "radiation” muodet o
region growing.

L INTRODUCTION

In oil and gas prospecting, geophysisists are confronted
with the problem of estimating carth subsurface 10 depths up
10 6000 meters, Reflecoon seismology s o widely used
method 10 construet an accurate profile of the subsurlace
geology, Seismic energy from an explosion or other arnlicia
seismic source on the earth surfuce propagates downward
through rock layers, I acoustic impedance variatioos
between different layers of geologic strata exist, reflection of
some of the seismic energy from the rock layer interfuces
occurs and is detected at the surface reccivers, A number of
such receivers, called gesphones, is located on or near carth
surface. Seisinic trace the output of u geophone/hydrophone.
A seismnic secton is composed of muny seismic Lraces.
Seismic races are usually very noisy. Theretfore, they ure
processed exiensively before being used for the mrerpres-
tion af the varth subsurface. Such processing techmigues ac
stacking, velocity filtering, deconvolution and migration | 1.
The processed seismic sections provide a fairly accwiue
image of subsurface geology. The next swep in vl prospect-
ing is to intarpret the seismic sections. Seisinic Interpretaion
[1] generally assumes that:

i.  Coherent events seen on seismic necords or oo pro-
cessed seismic sections are reflecuons from acousie
impedance contrasts in the earth,

2. Seismic detail (waveshape, amplitude etc) is related 1o
geological detail, that i3 to soatigraphy and the nature
of the interstitial Auids,

An inerpreter generally stans with the most obvious
feature, usually the strongest retlection event or the event
which possesses the most disiinctive character amnd tollows
this event as long as it remains reliable. After following

reflective horizons, the inweroreter nes o wdenuly faardy
larpe-seade leutgnes of the deposiuonal siructure obf sedimen.
try racks and the myjor detormations wiinch nas atfecied
such rocks, These structures cun e broadly classified s
bemy enher Sauiting or oiding, Such Inmesting <rrocires
are bty annclines, salidomes, anconforminies ete S This
step s called struciyral lnierprecation. The wecomd step
SEISINIC WEIPIeaion is solsmtc siranvrapiy. Pants of Gosed-
menigry seguence can e distinguished trom others aecond
e 10 seneral seismic appearance, The followiny  csng
data e seismie facies clements) should he whken nio con-
sideralion during stratigraphic imemretition:

retleetion amplitude, dominant frequency, interval veio-
city, rellecitun conliguration, retlection conlowmty, e
seumelry of the sersmic faces umt, abundance of reilections,
presence of diffruetions.

They contan informaton abont tvpe of sriiiication,
lithology, depositional process wwl enviranment cte. For
example, reflection free configuranion s charadterisic of
reels. Parallel configurarion s naturally the mest wuls
spread conliguration in sedimentary rocks, Convergent oug
may be caused gither by pinching our or by ditferential com-
naction. Cross-bedding s charactensuce of psamnmules and o
diagnosne criterion for sandy rocks (sands, sandstones ete. s,
Sigmoid und obligue configuraiions dccur in connection with
progradational patterns on  the sbelf margin, Clhuouc
retlection coniiguranon s characweristic of diapine cores
whose intemal seucture 18 very complex,

The interpretation of seismic sections has not been
automated because of the heavy amount of knowledge
involved in the decision making process. The human brain ts
an exceptionally good pattemn recognizer and in generil has
not yer been supassed by uny computer. However, there
exist some reasons for using compulerized methods
assisting the interpreter. Such reasons are speed. consisiency
and concrete specificanton of decision making critena. There
have been several efforts 1o use image and signal processing
techniques in seismic interpretation. Some technigues uare
concentrated on the automatic horizon picking [8,11L
Parametric description of seismic reflection signatres and
the use of fuzzy set theory in seismic interpretation e
described in (11,12}, A knowledge-based approach to geuw-
physical intcrpretation 15 described in [13]. The use ol the
texiure in seismic imape segmentation 18 descnbed i (Y, 131
‘The local exture of a seismic image is described in terms ol
emnplates. Such templates characterizing different textures
are derived. A Jeast squares approach s used for template
matchingz at each pixel of the seismic image. The result of
the emplate matching is vsed for the segmentanon ot the
seismic image. Another approach for texture description is
the use of the run length ut each image pixel [9]. Pixels 1n
regions having elongated characteristics (e.g. long purallel
honzons) w@end to have longer run lengths than the pisels
belonging to regions of chaotic reflections. Thus seismuc
imapge segmentation in terms of the honzon length can be
achieved.
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2, PROPOSED APPROACH

The main purpose of this paper is to develop methuxds
for scismic image segmentation. This segmentanon must by
done in such a way so that it produces results which are con-
sistent with the geophysical and geologic experience. 1he
means that the primitive features used in 1he segmentation
must be such so that they have correspondence with the cotl-
des used by the interpreter. Geophysical interpretation ls
heavily based on the seismic horizons, their characterisucs,
and their interrelationships, as has already been described
priefly in this section. Thus we have used the sersmic hor-
izons and their features (length, signature, reflecuon
strength, position, orientation) is our primitives for exture
analysis and segmentation of seismic images, Bach of those
features has a vatue for each horizon. The freguency of
appearence of a specific value of feature creates the fiisto-
gram of this feature. The horizons can be clustered to dif-
ferent classes by defining thresholds on the feature histo-
gram, Thus, by defining appropriate thresholds on the histo-
gram of the reflection strength we can cluster the horizons to
weak and strong ones. Euch honzon has a pOSILION ON 4N
image. In most cases, all horizons labeled wenk tend also to
concentrate in the same image region(s). The same happens
for horizons labeled long. This is explained by the tact 1hat
horizons having similar characteristics are created by geo-
logical formatons having similar characterisncs and heiny
located in the same region(s) in the carth subsurfuce fe.g.
reefs tend to produce very weak reflections). Thus by clus-
tering horizons according to a specific feature we alsey per-
form clustering of the selsmic image. However, this cluster-
ing is not complete, Only the image pixels corresponding to
seismic horizons tave been clustered. All other pixels have
not been clustered yet. Those pixels can be assigned 10 clus-
ters by using their geometric proximity to the seismic hou-
izons. A similar approach can be f{ollowed, when clusiering
using a multitude of features is required {¢.g. the seismic
image regions having short and strong horizons e
required). If m features are used, an m-dimensional

histogram is consmructed. By choosing appropriate thres-
holds we can cluster again the horizons into classes haviny
similar all m features. Having performed such a horizen
clustering, we can preceed to image SEEMENLAUON as 1t s
aiready been described for the case where one feature 13
used. Qur approach to seismic iexture description and
seismic image segmentation requires the following steps:

1) Description of the seismic exiure primitives in werms of
horizon features,

2)  Calculation of the thresholds in the horizon histograms.

3y Horizon following,

4) Calculation of the 1-d or m-d histograms of the hortzon
features.

5)  Clustering of seismic image pixels according w their

geametric proximity to seismic horizons.

Steps (1) and (2) are heavily based on expenence.
Therefore, they are performed by the interpreter interac-
tively. The interpreter chooses an image region which 1s
representative of a seismic texture and instructs the system
to find the horizons in this region and calculate their features
(1o be described later on). Then he chooses the APProprite
features and instructs the system to calculate the correspond-
ing 1-d or m-d histograms. Based on this histogram, he
chooses the appropriate thresholds and creates SEISMIC X~
ture description rules. Let us suppose that m features ay...a,
are used in the description of seismic texture. Let also
Xi..Xy be K different texture clusters. A horizon h i3
assigned to cluster k if satishes a Jdecision rule of the form:

If L{P],PQ,..,P,H} then b € Xi (1}

where L is a propositional logic formula and P; , i=t.m e
predicates of the form:
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¢ T:, i=1,.,m are the features and their corresponding 1hres-
holds. If the selection of the honzon features 1s known, the
choice of the optimud thresholds and of the opumal rule {1)
can be done automatically by a learning procedure described
in [14]. The interpreter presents to the Systems reglons hav-
ing different textures, The sysiem calculaes the opiinal
thresholds Ty,..,7, which discriminate the different sewmg
teXIUres. It also finds the optimal le {1) for wexture reeogni-
ton. It can also reject features possessing no discriminatory
power for texture description. The opimulity criterion used
is the mummal entropy.

3. HORIZON PICKING AND HORIZON FEATURL
CALCULATION

A seismic horizon is described as a list of the foilowing
form:

struct linepoint{
nt dtime;, /¥ two way trave! ame 4/
int trace; /¥ macenumber ¥/
unsigned long marker,
/* feature assigned to every node ®/
struct linepoint *nexpolnt;
} /* pointer 1o next node */
F

Information about local horizon fearures (e.g. locul retlecuon
strength, local signature, local onentation) at cuch horizon
point are stored at the each node of the horizon. Global
information  about the horizon f{e.g. average retlechon
strength, reflection variance, honzen length, honzon curva-
ture) are stored in the header of the list, Auromatic horzon
following has been exiensively weated in the lterature
{8,11,13], We have used a method which 1s similar to thi
described in [13]. Horizon following is considered 1w be
peak reflection following for reflfecuons which are stronger
than a predetermined threshold. Seismic bmage prelitering
by nonlinear filters [13,18] which sharpen reflection peiks 13
highly desirable and it produces less "jaggy” horizons. Let
us suppose that we follow a horizon and that we are at a hor-
izon peak located at pixel (i,j). Let also [{(1,]) be the LA
(reflection) intensity at that pixel. The first coordinate
denotes trace number and the second ong denotes twa way
travel time. Then the pixels I(i,j-1), [(,1), 10,j+1) are exam-
ined for possible expansion of the horizon. Only those pixels
are kept that are greater than the selected threshold. Il more
than one candidate remains, we decide expansion to the pixel
having the largest value. If there 15 an ambiguity {Le mwre
than one pixels having equal muximal intensity, 3uccessors)
we decide expansion to the most aligned candidate pixel
The criterion of alignment is asseciated with the computa-
tion of the previous and all possible current expansion slopes
and their absolute differences in & local and global sense.
This procedure is repeated for subsequent homzon expan-
sions. The horizon is followed until its intensity [alls below
the threshold. If the horizon is too short, it 18 rejected. If not
rejected, the pixels participating in this horizon arc marked
and the procedure is repeated for a new horizon. After hor-
izon picking, the local and global information about the hor-
izon is calculated. Local information is stored at each hor-
izon node, whereas global information is stored on the
header of the horizon list. The computation of most honzoen
features {e.g. length, average reflection strength) is smraighi-
forward. Local horizon slope is calculated by hnding the
lingar piecewise approximation of the honzon, The computa-
tion and the representation of the of the reflection signatures
is somewhat more complicated. We have used the represen-
tation scheme proposed in [11] for signatures. This scheme



represents a signuture in terms of 14 parameters. They are
computed and stored on each list-node. An "average” sign-
rure is computed by averaging all signatures along the hor-
izons and storing it at the list header.

¥ horizons have been picked and their tenrures have
been calculated, the construction of 1-d or m-d feature histo-
grams is rather smaightforward. If the decision thresholds
and decision rules have been chosen cither manually or by
the help of a learning procedure {14}, the horzon clusteriny
is also casily performed. At this siep only the horizons and
their corresponding pixels have been clustered. The "propa-
gation” of this clustering to the rest of the seismic image tol-
ows.

4. REGION GROWING

The obstacle in using classical region growing tech-
piques (4,5] on seismic images lies in the fact that the
features we have extracted refer only to pixels participating
in  horizons, whereas in classical 1mage e EMEn Lo
features characterize every pixel in the image o be ey
mented. Region growing depends on the the order we exam-
ing pixels tor similarity and the "seeds” are used 10 urow
regions. In our case the "seeds’ are abvipusly the pixcis on
horizons, We have to infer what informaton o assign o
other pixels that do pot purticipate in homzons, assumning il
pixels close to horizons will behave simmilarly. Thus we have
(0 investigate for proximity rather than for similarity.

The simplest approach would be 1o propagite the label ot o
horizon pixel to all pixels that are close 1o it apwattds or
downwards on the same seismic trace. [f this process %
repeated for all horizons, finally guch seismic 'mage pixel
will be clustered to the same cluster as its closest honzon in
the vertical direction. This scheme is justfied by the nature
of seismic races. However, it has been observed that such
region growing produces jagged regions. The “jugginess” of
Ihe resulted image can be reduced somehow by tiltering it by
either a median flier or a mede Alter [ 15].

A second approach to region growing is based on 2 combi-
nation of Voronoi tesselation [16] and mathematical mor-
phology [171. The horizon pixels are used as “seeds” tor the
Voronoi tesselation of the seismic image. They grow i suc-
cessive steps until they cover the enrire image. Al eich slep
it is checked if regions stemming from horizons of the same
cluster have common boundary. If this i the cise, these
regions are merged. The boundary (if any) between twi Jll-
ferent clusters is "frozen” a1 each step. The growimng ol the
image regions is performed by conditional dilation | 17]. Let
X, ,k=1..,K be subsets of the image plane Z? represcuung
the imuge pixels which correspond to each texture cluster.
Let also X (), k=1,.K be the sets represenling clusters
k=1..K at step (i) of the growing procedure. At siep (0),
X, (=X, , and it contins the horizon pixels corresponding

to cluster k. Let also B be a set, called a seructuring clement,
whose size is equal 1o the size of the region growing at onc
step. Its shape governs the geomewy of clusier growing, it
uniform growing along all dimensions is required, the struc-
turing element B must be a disk. However, in the Euclidean
grid Z2 not exact representation of a disk can be found. Thus,
the structuring element CIRCLE shown in Figure 1 hus been
used instead. This produces an acceptable relatively unifonn
growing along all dimensions. The region growing at step (1)
13 given by the following recursive procedure:

X6 =[Xeli-1) ® Bl A 1 XiG-b) )

&k

where @ ., U denote set dilation, intersection and union
[17]. (3) permits the growing of a cluster k in the image
regions which have not atready been covered by other clus-
ters. The main disadvaniage of this approach is thut n
enhances small patches comresponding to noise, which e
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found inside much larger regions. Therefore, a thind grow-
ing scheme has been developed which is much more robust
{0 noISE.

The third scheme is based on the following hentious
experiment: Let us suppose that a horizon pixel radiates
according to the law 1/r. This means that the rediation
received ot o pixel (i,)) is inversely proportional 1o the dis-
nee of this pixel from the radiating horizon pixel. L ull hor-
izon pixels belonging to the same cluster are radiating wt the
smne frequency, the energy received at a pixel (1)) s the
sum ol the adiations of each horizon pixel of this clusier.
The pexet (1)) 18 assipned to the cluster sending the maximal
radiation cnergy. By implementing this approach, we avoud
having small noisy regions inside larger regions. The smaller
regions radiate lesy and disappear. The radhation pattern can
be described in terms of a function of the torm:

rel?

OES (4

N
V(i rayerijib

Let xdi /) denote the position of the radiating pixels of the
pixeis belonging to the cluster k:

gl o) = Edla=t e =) (e jes = Xe A3

5¢i,j 3 is the 2-d delta functon. The radianon yefi ;) recelved
at each pixel (3,]) 18 given by:

(i Y= 2 ) * A f) e

where **  denotes 2-d convolution. The pixel i) s
attributed to the class 7 for which:

i )= max veld j)

(7

The only disadvanmge of this region growing model 15 it
computational complexity, since it requares the compuraton
of K 2-d convolutions, If uniform region growing is
required at all dimensions, a circular radwation pattern s
employed by choosing a=b=1. However, in seismic applicu-
ions radiation patterns elongated at the honzontal Jirection
are preferable. This conforms with the fact that most geolo-
gic structures are also elongated horizontally.

5. SIMULATION EXAMPLES

An example of the application of the above-mennoncd
method is shown in Figure 2. The onginal seismic imape 13
shown in Figure 2a. The detected seismic horizons are
shown in Figure 2b. The feature used for segmentation s the
local orientation of the seismic honzons, 1.2, we were
interesting to find seismic image regions containing horizon-
tad or tilied horizons. The thresholds used were -4, 4
degrees, i.e. all horizons having local slope in the range [-
4 4] degrees were considered to be almost honzontal. The
result of the region growing algorithm (7) is shown in Figure
2c. The white and dark regions in Figure 2c represent
seismic image regions containing horizons having zero and
negative siope respectively. The iwo regions still contain
some small noisy patches corresponding to reverse loCul

stope in the original image. These noisy patches can be
further reduce by using mode filtering.
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Figure 1 Soucturing set CIRCLE

(b) (c)

Figure 2: (a) Seismic image
(b) detected seismic honzons

(c) seismivc image segmentation into e gions containing

+

horizontal horizons (bright regions) and horizons with
negatve slope (dark regions) respectively.
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