MORFHCOLOGICAL VORONGI TESSELLATION AND DELAUNAY TRIANGULATION
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ABSTRACT
A new method 15 1introduced for implementing, the Versnoi
tessellation and the Delaunay trisngulation. in the Z° plane. Thas

method uses metrics on a discrete grid and discrete approximations
of the euclidean metric. Mathematical morphology 135 used o
implement Voronoil tessellation besed on these metr:ics.

1. INTROCDUCTION

Vorenoi tessellation i1s a wvery important tool in computational
geometry [4]. object recognition [1] and 1image analycis (21,
Several important problems can ke solved by employing Yoronoi
tessellation, for exemple Delaunay triangulation., convex hull,
object decomposition int> simple components (triangles).

Let I={x1.x2,....xﬂk be & set of N points on 2 subset W. The
Voronoi Tessellation is given by

Vii)={x=W: d{x.xj]ﬁdix,xj). 1771} (1]
Vor (X)=lJ Y¥{1}

wherse :WERnGr WEZH and d7) 13 a distance function. Wil 1z  the

Voronol reglon of X and Uar{f] 13 called the Voroncl diagram of ¥X.
In this peper a novel algerithm for the computation of Veronoa

tessellation 15 praposed. [t 15 based on mathematicoal morphology.

It construct Voronoi disgrams on the Euclidean grid Z2 for any

distance measure, e.3J. Euclidean, Hausdoriff, cityblock.

chess-hoard, octagonal. Its computational complexity is of
G (1AN) .

order

Eoch Voronoi region Vii} contains all points of W that are

closer to x5 than to any other xj. 1. This means that 1t can be

obtained by “growing" all pointz xi,i=1.....N simultanegusly until
they cccupy the entire W. When two Voronoi region collide, a

boundary 1is formed and no further growth 1is allowed along this

boundary. The growth mechanism ig the dilastion operator:

S_ _ 2 '
@n7- U v, {xEZ : E_‘{n‘f#ﬂ}- {x: BT ‘r’} (2)
In the following section a presentation of distance functions is
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made. In section 3 a method for implementing the

Yoronod
tessellation by using various distance functions 15 given.
Simulation examples are shown and conclusions are drawn 1n sechlon

4.

2. DISTANCE FUNCTIONS

The notion »f the distance between t{wo points 1s fundamental

in 3 number of geometrical problems. In the case of the Voronol

diagram, the Euclidean metric 18 used Lo find the points

X
on the perpendicular bisector of two given points in R,

lving

—_

The best known distance measure between two points in R™  is
the Fuclidean distance. A coordinate independent distance thst can

be used Lo calculated the Euclidean digtanre 15 the Hausdorftft

digtance function, that 1z defined by using mathematical morphology

dh{x.y}=1nf {g . HEDP E{p}T W } (3]
where B(p) is » disk of radius pERZ.

] . . 2 .
In order t“o define a distance messurs 10 A ri1ds  wWith
J

different connectzivity are used. Such are the city Dblock for

3
d-connected and the chessboard distance for an eight-connected
5

ey

grid. When trying =o approximate in 22 the connectivity of the R
grid. then the octagonal distance function has to be used. The best

- ' rj - .
approximation of the Euclidean measure 1n Z° i3 given by

dzix.y}={nEm: n—0. 9% dE[K,Yl (n+0.> } [ 4]
2
where de is the Buclidean distance of x.y 1in Z°. An equivalent
definition for {37 1in 7% is:
¥

dhix.y}=inf {ﬂ : xh B(n}T v } x,y€Z7, n=0,1,2.... (5)
where Bin) defines a structuring element of gize nt. There are
several ways hto construct a structuring element Bin) of size n. In
the following we present two distance functions based on (3Y hut
using & different definition for Binj.

The uniform-step distance (USD) is denoted Dby dusd{ﬁ.yi and

defined by using (5), as fellows [3]:
E{n}={EEBB$ .. B (n times), n=1.2....
i, n=0

where B is the structuring function of unit size. B 15 a

{6

aymmetric
compact et 1in ZZ containing the origin. When using a RHOMBUS

(SOUARE) structuring element {3] then the city block (chesgsboard)

distance function results. Egs. (5)-(6) provide an easy iteraftilve
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way for computing different measures by using dilation.

Another distance function 13 the neriodically—uniform-step

distance (PUSD)Y. 1If BI’EE""’Em are all symmetric compact sels 1n
22 containing the origin, Bim) of size m (m=1) 13 given by [9):
Etm}=El$ EEEB .. . 6B E’m' (me=l) ., HlC EZC L Em (7]

For n2m B(n) is defined by:

E(n1={ pB(m) @ Biq). n=pm+q>0. gim. (8)

0. n=0
where pBim)=B(m;g Bim).. BB(m), (p-times). If E'l* E2 {m=2) are Lhe
RHOMBUS and the SQUARE structuring elements [11], then the octagonal
distance function 1is evealuated. Egs. (51, (7} and (87 Can
approximate the Euclidean digtance in the grid Z2 if the sets
El""*Em are chosen cgrefully. A better approximation of the

Fuclidesn distance in 2% can be found by using ancther class of

distance functions based on a slightly different definition:

daix.y}=inf {k : EkT ¥ }, kKEN
[
+
Kkzi}{k+1$ Bk}U Sk k>0, :{G—x
where Ek' k=1.72_ ... Bare symmetric structuring elements which
+

contain the origin and Sk im 3 set of points to be defined. When

aach structuring element Ek is chosen to be a RHOMBUS and denoted

by B the set S; 1s glven by:

+ -l 5 _ -
Sk- { o AR~ {Kk_l$ 2B “{k,.1$ By + and dz{z.x} k} {10

where Z2B=B@bB and dzij is given by (4). It 5; iz chosen a5 1in ElDA,
then X 1n (91 implements & recursive wey for growing a disk 1in rA
centered on the point x. At each step k. the disk Kk—l 15 dilated
by B and the points of 5; given by (10) are appended. The sels 5;,
k=1,2,... can be preccmputed and stored.

In the following section the above metrics will be applied Lo

the Veronoi teasellation.

3, VORONOI TESSELLATICN

A new method for constructing the Voronoi diagram of a given
set of distinct points 1n XCWEEZ will be presented. This method
finds the Voronol regions of o given set XCW rather than the
Vornnoi =dges and vertices. It uses successive region growing of
the n-Voronoi region of each point, denoted as Nn{i}. The Nn{i}
region of a point X, is the set of points already oappended to X,
during the n previous growing steps. When two or more n-Yoronoil

186 CAIPS



regions <ollide. the collision points form subsets of the Voronol

polygons and the growing stops in this direction. This procedure is

2
repeated until no further growth is possible in WEZ©. The
algmrithm 1s described as follows:

overall

' = - LT T ' ; - >
n t1} {:ﬂ_{w i :-::E[nn_llil}QBn]. e (1), x& Hn_l[;l}l}. n>1
ey = ijiX—xi}
0 1 (11}
N (1) = Hn_lillu n {1}, Nyti) = {1}
Wher Hn 15 the n—-th 1n order siructuring element of Bin). The set
20 contains the collision points of Xy a3t the growing step n:
y o= o T A 1 1 .
enfai {AL{W i e g [ Dn{l} ﬂ DnLJ]] } (12)
y
anl} ={x=W: =& Hn—xn_l} (13}
K =X B Bin)
The points 1n the set enEI] have the same distence n from & poilnt
% and 2t least from 3ancther point xj of X {i=1} by udsing (5). The

SAT Nn[iﬁ sontains dll the pointg of {W-X} that have been appended

ko *y and are at a distance kun. If kmax[i} denates the step 1n

whirh the polint X cannct grow any more, the Voronol region V(1) of
a polnt xiEH 15 defined by using (11} as:
U{lj:Nk {1}: N}{ - [1}

{1)
a0 Ma X

(14}

Thus the union of all kmaxtllmvoronoi regions of the points in X 1g
equal to the Voronoil diagram of the zet X. (11} 1is useful in

practice because 1t allows the construction of the Voronoi

neilghborhoods recursively. A n—VYoronei neighborhood nn{i} contains
the new points to be sppended to the corresponding (n-1)-Voronoi
reglon Nn_l{i}, Thus the Nn_lti] region grows to the Nnii] region.,
The set which contains the boundary points of ¥(i) i3 denoted by

Fiiy and 1s given by:
F{i}={ xE{W—X}:xE{Hk (1) - N[k _l][i}}} (15)
max max
where [—} dencotes set subtraction.

Lat X={xl,x2;..,,xﬂ} be a3 set of N points. The basic i1dea of
the algorithm is to grow eésach given point of X by growlng the set
Nn{i]. More precizely, at each step the points of nn[i]ﬂﬁ xiEHl are
appended to N__, (1), ¥ x.EX, thus resulting in the N (1) regions,
v X EX. The set n_(1) 1s found by dilating n__, (i) by En and then
checking whether all points mE[nn_l{iHBEnl have been appended to X
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exclusively (and not ftoc another point xj,j#i 3t the sams time) . We
also check if the point X 3already belongs to a (n-1)—-Voroncl region
of a point xj.j#i of ¥. The iterative dilations 3top when all
points of W-% have been appended to one of the Voronol regions.

The previously described method can be modified to construct
the Fucltidean Yoronoi1 dliegram in ZE. In this case the distance
function used to deriwve the definitions 15 given by (%). The only
change to the above formulas 18 fLhe set Hk. now defined:

for n=1:%.={(x; @ BU SI+ (16)
fir n}’l.:}{n=[}{n_l$ ByU 3
where Sk ies given by (10} and B iz the RHOMBUS structuring element.

Figure 1: {a) Vorscnol ftegsszellation (b} Delaunay trisngulation of
binary oblect |

4. SIMULATICNS EXAMPLES AND CONCLUSIONS

The previousty described method has Dbeen implemented 1n C
programming languaege. The Morphelogical Voronol tessellatlon using
thiz method has been tested and found Lo be very successiul. Figure
1a. This tessellstion haz alsoc been used to obtsin the Delaunay
triangulation {4}. The Delaunay triangulation of a polygonsl object
¥ obtained by using this method i3 shown in Figure lb. The set X

of the corners of this object have been obtoined by morphological

operations:

188 CAIP91



s E E’

HE e ¥ - HE (173
[ S

KE.= X = (X ]E

where X° denotes Fhe TompLament St X with respect fto W and HE
denotes set opening 3], The ‘orner Set KC 15 used to obtain the

Voronol tessellation sf  {  3pd. subgequently, 1ts De launay
trisngulatian.

In this paper a new method for performing Voroneoi teszellation

On 2 3et of points in 27 hac been oresented. A Jgeneral definition

of a Jdistarnce functian s 2aern o

{n

2d that 18 implemented by using
the morvhological operstir -F 1:.arion 35 3 growing mechanism. The
proposed method :s5 indeponasnt 3fF -he coordlnate system. It allows
the implementation of d41ffeyant tessellations based an different
distance funcrtions, #.:J. the EBEuclidesn., the Housdorft £, the
octagonsl, the chessboard and  fhe ety block. It has low

computational comptaxity af ~rder G{1l/NY and allows parallel
implementat ion.
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