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ABSTRACT
Many old paintings suffer from the effects of certain
physicochemical phenomena, that can seriously degrade
their overall visual appearance. Cleaning methods, that
utilize chemical treatment substances, can not always
be used, due to possible deterioration of the painting
surface or reduction of the painting artistic value. Dig-
ital image processing techniques can be utilized for the
purpose of restoring the original appearance of a paint-
ing, with minimal physical interaction with the paint-
ing surface. In this paper, a number of methods are
presented which can yield satisfactory results. Indeed,
simulation results indicate that acceptable restoration
performance may be attained, despite the small size of
painting surface data utilized.

1. INTRODUCTION

Varnish oxidation is a phenomenon that can degrade
seriously the overall visual appearance of old paintings.
Dirt, smoke as well as other degradations deteriorate
the situation even more. The end result is that colors
faint and the painting appears black. This is partic-
ularly true for church paintings, where candle smoke
degrades icon colors. In most cases, this degradation
can affect the artistic value of a painting. The process
of removing this oxidation layer is performed by con-
servation experts. It is a time-consuming process which
does not always promise guaranteed success. Indeed,
the prevailing environmental conditions as well as the
chemical properties, which are exhibited by the wide
spectrum of different varnishes, make the task of se-
lecting the appropriate cleaning process quite difficult.

In many cases, a trial and error approach is imple-
mented, whereas in small regions (“samples”) of the
painting chemical cleaning substances are applied in
order to select the most appropriate one, that will be
subsequently utilized to clean the whole painting. Digi-
tal image processing techniques can be applied for color

restoration, aiming at obtaining an estimate of the orig-
inal appearance of a painting, without extensive chem-
ical cleaning treatment of its surface. In this context,
Volterra filters have been utilized to extract the origi-
nal color information, by utilizing sampled images, in
the RGB color space, of certain regions of the painting,
before and after cleaning [1].

Some novel approaches to this problem are pre-
sented in this paper. Let us assume that certain uni-
formly colored regions of the painting have been treated
with cleaning chemical substances and that a digital
image representation of it is available. Of course, most
image acquisition systems (e.g. scanner or camera de-
vices) produce RGB data values. However, the RGB
color space does not possess perceptional uniformity.
That is, actual color differences between two colors do
not correlate well with perceived color differences [2].
This fact indicates that other color spaces might be
more appropriate, at least for the purposes of color im-
age processing applications. The CIELAB color space
exhibits good correspondence between perceived and
actual color differences, with the added advantage of
device-independence [3].

Of course, varnish oxidation can be modeled as a
degradation process. It would be best for restoration of
CIELAB values of both the original and the corrupted
image are readily available. This could be directly ob-
tained with the aid of a spectrophotometer. However,
in most cases only photographs or digital images of the
painting itself are available. Thus, only RGB data are
available and a color space transformation should be
performed. We assume that certain painting patches
are cleaned chemically, in order to obtain reference
(original) color values.

The rest of this paper is as follows. In Section 2 the
mathematical foundation of the restoration methods is
given. Experimental results are presented in Section 3.
Finally, some conclusions regarding the overall restora-
tion performance are presented in Section 4.



2. RESTORATION APPROACHES

In the approaches presented in this paper, only one ac-
quisition pass is required, provided that a number of
painting patches have already been cleaned. In addi-
tion to uniform chromaticity, these samples should be
representative of the colors that appear in the painting.
Finally, similar colors to the ones of these clean samples
should also exist in oxidized parts of the painting.

The problem can be stated as follows. Let us sup-
pose that s is the original image (unknown) and x =
g(s) + n is the degraded (oxidized) one, where g(·) de-
notes the unknown degradation function and n is obser-
vation noise. Let us suppose that we have N cleaned
and degraded color samples xi, si respectively, with
i = 1, . . . , N . The problem is to perform a “blind”
estimation ŝ of the inverse function ŝ = f(x), based
on these measurements that minimize the following ap-
proximate expression for the mean square error (MSE):

MSE '
1

N

N∑
n=1

||sn− ŝn|| =
1

N

N∑
n=1

(sn− ŝn)T (sn− ŝn)

(1)
As it has already been mentioned above, this approach
deviates from standard restoration procedures, because
the degradation function is unknown. Despite the in-
volvement of some first-order statistics, the problem is
approached clearly from a deterministic point of view.
That is, little or no assumptions are made about the
painting surface degradation model.

In the following, the goal is the derivation of a func-
tion that can describe adequately the change in char-
acteristics (chrominance, luminance) of the painting
surface. It should be clear that limited spatial infor-
mation will be utilized in order to approximate this
phenomenon.

2.1. Linear approximation

Assume that the color of a pixel is denoted by x =
[x1 x2 x3]T , where x1, x2 and x3 correspond to the
L∗, a∗ and b∗ color space coordinates of the point,
respectively. If N cleaned regions are available, N cor-
responding regions from the oxidized part of the image
should be selected. Let the vectors m̂si and m̂xi , with
i = 1, . . . , N , represent the sample mean of the ith
clean and oxidized region, respectively. For each de-
graded observation x we are interested in obtaining an
estimate ŝ = f(x) of the reference color s.

A possible choice for this function is:

f(x) = (A + I)x (2)

where I is the 3×3 identity matrix and A = [a1 a2 a3]T

is a 3 × 3 coefficient matrix. The displacement vector

d = s− x can be expressed as:

d = Ax (3)

The coefficient matrix A can be computed by polyno-
mial regression, that is:

[d1i d2i · · · dNi]
T = m̂T

xai (4)

where dij = m̂sji − m̂xji and:

m̂s = [m̂s1 m̂s2 · · · m̂sN ]
m̂x = [m̂x1 m̂x2 · · · m̂xN ]

(5)

2.2. White point transformation

Another approach is based on the fact that an object
may look different, under different lighting conditions
[4]. Assume that a clean sample and its oxidized ver-
sion are viewed under the same lighting conditions.
Different CIEXYZ (and, consequently, CIELAB) val-
ues would be recorded. Instead of trying to produce
an estimate of the color difference for corresponding
clean and oxidized samples, an assumption can be made
that both of the samples have similar CIEXYZ values.
Thus, the difference in appearance can be attributed
solely to the different white points used for the color
transformation required to obtain CIELAB values. In
the discussion that follows, vectors with the index XYZ
refer to CIEXYZ tristimulus values. Let s denote a
vector of CIELAB values, which correspond to a clean
sample, and let xXY Z denote a vector that contains the
tristimulus values of the corresponding oxidized sam-
ple. The mapping from one color space to the other is
given by a nonlinear equation of the form:

x = T{xXYZ ; wXYZ} (6)

where T{·; ·} denotes the nonlinear transformation from
CIEXYZ to CIELAB and wXYZ is the white point
tristimulus values vector. Thus, a white point vector
wXYZ should be determined which, after being substi-
tuted into equation (6), should yield an estimate of the
clean sample, that is:

ŝ = T{xXYZ ; wXYZ} (7)

Given the sample mean vectors m̂xXYZ of the oxidized
samples, the error can be expressed as:

e = m̂s − T{m̂xXYZ ; wXYZ} (8)

Since the mean square error E[eTe] can not be esti-
mated, the instantaneous error function E = tr(eTe)
can be minimized with respect to wXY Z , to yield a so-
lution for the white point vector. Although this is a



sub-optimal solution, it can yield satisfactory results,
with little computational overhead.

White point transformation is extensively used in
calibration problems [3]. Since the white point con-
tains information about the spectral qualities of an
illuminant, it may model more accurately the degra-
dation process, compared to the other methods pre-
sented. Furthermore, only three parameters should be
estimated, which can lead to fast implementations, de-
spite the fact that the transformation T{·; ·} is nonlin-
ear; lookup tables can be used for this purpose.

2.3. RBF approximation

Radial basis functions networks have been used suc-
cessfully as universal approximators [5, 6]. An arbi-
trary mapping f : Rp ⇒ R can be approximated as
follows:

f(x) '
M∑
m=1

wmφ(||x− tm||) (9)

where {φ(||x− tm||)|m = 1, . . . ,M} is a set of M arbi-
trary functions, which are known as radial basis func-
tions, with corresponding centers tm and weights wm.
Of course, if the unknown function is a mapping of the
form f : Rp ⇒Rq, equation (9) can be utilized to per-
form approximation on each one of the q dimensions
separately.

Let φ(·) denote the non-normalized Gaussian func-
tion, i.e.:

φ(||x− tm||) = g(x; tm,Σ
−1
m ) (10)

where Σ−1
m represents the inverse covariance matrix of

the mth Gaussian and:

g(x; tm,Σ
−1
m ) = exp

{
−

1

2
(x− tm)TΣ−1

m (x− tm)

}
(11)

Our goal, is the RBF approximation of the unknown
function f : R3 ⇒R3, where it is known that:

f(m̂xn) = m̂sn − m̂xn , n = 1, . . . , N (12)

The function f can also be written as:

f(x) = [f (1)(x) f (2)(x) f (3)(x)]T (13)

where f (i), i = 1, 2, 3 is the ith color component of f .
Thus:

f (i)(x) '
M∑
m=1

w(i)
m g(x; t(i)

m ,Σ
(i)−1

m ), i = 1, 2, 3 (14)

where the parameters of M Gaussian functions should
be estimated, for each one of the three color compo-
nents. Estimation was carried out by a gradient descent

algorithm, in order to minimize the total squared error
[5]. If the data set size N is large, the computational
requirements can be greatly reduced, if the inverse co-

variance matrix Σ
(i)−1

m takes a diagonal form. If the
computational cost is still high, the inverse covariance

matrix can be set equal to 1/σ
(i)
m

2
I, where 1/σ

(i)
m

2
is

the variance of the mth Gaussian function for the ith
color component. It should be evident that these sim-
plifications may limit the overall network restoration
performance.

3. SIMULATION RESULTS

Simulations were carried out on a painting which was
chemically cleaned on its right half. Regions of the
cleaned and oxidized parts are depicted in Figures 1(a)
and (b), respectively. Five regions on each part were se-
lected, with sizes ranging from 5× 5 to 16× 16 points,
depending on the uniformity of the sample. Sample
mean values of each region were estimated and conse-
quently utilized to restore the oxidized image, with the
methods described in Section 2.

Results of the linear approximation and white point
transformation methods are shown in Figures 2(a) and
(b), respectively. In the RBF approach either one or
two Gaussians per color channel were used to approxi-
mate the displacement in the CIELAB color space. An
estimate of the mean square error E[(m̂s−m̂ŝ)T (m̂s−
m̂ŝ)] was used as a quantitative criterion for assess-
ing color restoration performance. Results are sum-
marized in Table 1. Subjective comparison indicated
satisfactory performance, for the white point and lin-
ear approximation methods, with the former slightly
outperforming the latter, as can be seen by comparing
Fig. 2(a)-(b) with Fig. 1(a).

Table 1: Comparison of MSE for the presented meth-
ods.

Method MSE
Linear approximation 93.21
White point 190.37
RBF (one Gaussian per channel) 126.46
RBF (two Gaussians per channel) 88.30

The fact that, subjectively, restoration performance
does not correlate well with the figures of Table 1 may
seem at variance with the claim of good perceptual
uniformity of the CIELAB color space. However, these
figures do not reveal the overfitting characteristics of
each method. Thus, the RBF networks used approx-
imated quite well the unknown function at the points



of the data set, but could not interpolate satisfacto-
rily. This is not a shortcoming of RBF networks, but
rather a consequence of the small data set size used
in this experiment. On the other hand, white point
transformation and linear approximation yielded good
approximation and interpolation performance, due to
the underlying “smoothing” nature of each method.
Additionally, computational requirements of these two
methods is low.

The effectiveness of the presented methods, was
found to be strongly dependent on the size of the data
used, as well as the size of the color space region they
occupied. Of these two factors, the latter one is of the
highest significance, because if the gamut covered by
the available samples is very limited, poor restoration
performance will be obtained, regardless of the number
of samples used.

4. CONCLUSIONS

This paper presented a number of digital restoration
techniques for old paintings, which can be used to re-
cover the original painting appearance with little phys-
ical manipulation of the painting surface. Despite the
apparent simplicity of these methods, simulations per-
formed on a number of different paintings indicated
that satisfactory results can be obtained. In addition
to the advantages mentioned above, the small compu-
tational requirements can contribute to the overall use-
fulness of these methods.
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Figure 1: Test image: (a) clean region and (b) oxidized
region.

(a)

(b)

Figure 2: Restoration performance results: (a) linear
approximation and (b) white point transformation.


