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ABSTRACT

A robust music genre classification framework is proposed
that combines the rich, psycho-physiologically grounded
properties of auditory cortical representations of music re-
cordings and the power of sparse representation-based clas-
sifiers. A novel multilinear subspace analysis method that
incorporates the underlying geometrical structure of the
cortical representations space into non-negative tensor fac-
torization is proposed for dimensionality reduction com-
patible to the working principle of sparse representation-
based classification. The proposed method is referred to
as Locality Preserving Non-Negative Tensor Factorization
(LPNTF). Dimensionality reduction is shown to play a cru-
cial role within the classification framework under study.
Music genre classification accuracy of 92.4% and 94.38%
on the GTZAN and the ISMIR2004 Genre datasets is re-
ported, respectively. Both accuracies outperform any ac-
curacy ever reported for state of the art music genre classi-
fication algorithms applied to the aforementioned datasets.

1. INTRODUCTION

Despite the lack of a commonly agreed definition of music
genre due to genre dependence on cultural, artistic, or mar-
ket factors and the rather fuzzy boundaries between differ-
ent genres, music genre is probably the most popular de-
scription of music content [1].

Psycho-physiology indicates that the acoustic stimulus
is encoded in the primary auditory cortex by its spectral
and temporal characteristics. This is accomplished by cells
whose responses are selective to a range of spectral and
temporal resolutions resulting into a neural representation.
In particular, when the acoustic stimulus is either speech or
music, its perceptual properties are encoded by slow spec-
tral and temporal modulations [13, 18].

The appealing properties of slow spectro-temporal mod-
ulations from the human perceptual point of view and the
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strong theoretical foundations of sparse representations [4,
6] have motivated us to propose a robust framework for
automatic music genre classification here. To this end, the
auditory model [17] is used in order to map a given music
recording to a three-dimensional (3D) representation of its
slow spectral and temporal modulations with the same pa-
rameters as in [15]. This 3D representation is referred to
as cortical representation and exploits the properties of the
human auditory system [18]. The cortical representations
form an overcomplete dictionary of basis signals for music
genres, which is exploited for sparse representation-based
classification (SRC) as proposed in [19]. That is, first each
music recording is represented by its cortical representa-
tion. Second, each cortical representation is modeled as
a sparse weighted sum of the basis elements (atoms) of
an overcomplete dictionary, which stems from the corti-
cal representations associated to training music recordings
whose genre is known. If sufficient training music record-
ings are available for each genre, it is possible to express
any test cortical representation as a compact linear combi-
nation of the dictionary atoms of the genre, where it ac-
tually belongs to. This representation is designed to be
sparse, because it involves only a small fraction of the dic-
tionary atoms and can be computed efficiently via `1 op-
timization. The classification is performed by assigning
each test recording to the class associated with the dictio-
nary atoms, that are weighted by non-zero coefficients.

Since we would like to build an overcomplete dictio-
nary extracted from training cortical representations, the
dimensionality of dictionary atoms must be much smaller
than the cardinality of the training set. Such a dimension-
ality reduction facilitates the treatment of missing data,
noise, and outliers. Conventional linear subspace analy-
sis methods, such as Principal Component Analysis, Lin-
ear Discriminant Analysis, and Non-Negative Matrix Fac-
torization (NMF) deal only with vectorial data. By vec-
torizing a typical 3D cortical representation of 6 scales,
10 rates, and 128 frequency bands, a vector of dimensions
7680×1 results. Handling such high-dimensional patterns
is computationally expensive not to mention that eigen-
analysis cannot be easily performed. Despite the imple-
mentation issues, by reshaping a 3D cortical representa-
tion into a vector the natural structure of the original data



is destroyed. Thus, dimensionality reduction applied di-
rectly to tensors rather than their vectorized versions is
desirable. Unsupervised multilinear dimensionality reduc-
tion techniques, such as Non-Negative Tensor Factoriza-
tion (NTF) [2] or Multilinear Principal Component Analy-
sis (MPCA) [12] as well as supervised ones including Gen-
eral Tensor Discriminant Analysis (GTDA) [20] or Dis-
criminant Non-Negative Tensor Factorization (DNTF) [21]
could be considered. However, the just mentioned meth-
ods do not take into account the geometrical structure of
the original data space. To reduce tensor dimensions in a
consistent manner with the working principle of SRC, we
should guarantee that two data points, which are close in
the intrinsic geometry of the original data space are also
close in the new data space after multilinear dimension-
ality reduction. To this end, we propose a novel algo-
rithm, where the geometrical information of the original
data space is incorporated into the objective function op-
timized by NTF. In particular, we encode the geometri-
cal information by constructing a nearest neighbor graph.
Furthermore, the non-negativity of cortical representations
is preserved to maintain their physical interpretation. The
proposed method is referred to as Locality Preserving Non-
Negative Tensor Factorization (LPNTF). We derive a mul-
tiplicative updating algorithm for LPNTF, which extracts
features from the cortical representations. For comparison
purposes, NTF, MPCA, GTDA, DNTF, and random pro-
jections are also tested.

Next, the features extracted by the aforementioned mul-
tilinear dimensionality techniques are classified by SRC.
Performance comparisons are made against the SVMs em-
ploying a linear kernel. The reported genre classification
accuracies are juxtaposed against the best ones achieved by
the state of the art algorithms applied to the GTZAN and
ISMIR2004 Genre datasets. More specifically, two sets of
experiments are conducted. First, stratified ten-fold cross-
validation is applied to the GTZAN dataset. The proposed
genre classification method, that extracts features using the
LPNTF, which are then classified by SRC (i.e. LPNTF plus
SRC), yields an accuracy of 92.4%. Second, experiments
on the ISMIR2004Genre dataset are conducted by adher-
ing to the protocol employed during ISMIR2004 evalua-
tion tests. This protocol splits the dataset into two equal
disjoint subsets with the first one being used for training
and the second one being used for testing. Features ex-
tracted by NTF, which are then classified by SRC, yield an
accuracy of 94.38%. An accuracy of 94.25% was achieved
when the LPNTF plus SRC framework is employed. To
the best of the authors’ knowledge, the just quoted genre
classification accuracies are the highest ever reported for
both datasets.

The paper is organized as follows. In Section 2, ba-
sic multilinear algebra concepts and notations are defined.
The LPNTF is introduced in Section 3. The SRC frame-
work, that is applied to music genre classification, is de-
tailed in Section 4. Experimental results are demonstrated
in Section 5 and conclusions are drawn in Section 6.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent
of matrices (i.e., second-order tensors) and vectors (i.e.,
first-order tensors) [9]. Throughout this paper, tensors are
denoted by boldface Euler script calligraphic letters (e.g.
X, A), matrices are denoted by uppercase boldface letters
(e.g. U), and vectors are denoted by lowercase boldface
letters (e.g. u).

A high-order real valued tensor X of order N is defined
over the tensor space RI1×I2×...×IN , where Ii ∈ Z and
i = 1, 2, . . . , N . Each element of tensor X is addressed by
N indices, i.e. xi1i2 i3...iN

. Mode-n unfolding of tensor
X yields the matrix X(n) ∈ RIn×(I1 ...In−1In+1...IN ). In
the following, the operations on tensors are expressed in
matricized form [9].

An N -order tensor X has rank 1, when it is decomposed
as the outer product of N vectors u(1), u(2), . . . , u(N), i.e.
X = u(1) ◦ u(2) ◦ . . . ◦ u(N). That is, each element of the
tensor is the product of the corresponding vector elements,
xi1i2...iN

= u
(1)
i1

u
(2)
i2

. . . u
(N)
iN

for all in = 1, 2, . . . , In.
The rank of an arbitrary N -order tensor X is the mini-
mal number of rank-1 tensors that yield X when linearly
combined. Next, several products between matrices will
be used, such as the Kronecker product denoted by ⊗, the
Khatri-Rao product denoted by¯, and the Hadamard prod-
uct denoted by ∗, whose definitions can be found in [9] for
example.

3. LOCALITY PRESERVING NON NEGATIVE
TENSOR FACTORIZATION

Let {Xq|Qq=1} be a set of Q non-negative tensors Xq ∈ RI1
+

×I2×...×IN of order N . Let us also assume that these Q
tensors lie in a nonlinear manifold A embedded into the
tensor space RI1×I2×...×IN

+ . Accordingly, we can repre-
sent such a set by a (N + 1)-order tensor A ∈ RI1×I2×...

+
×IN×IN+1 with IN+1 = Q. Conventional NTF operates in
the Euclidean space and does not consider the intrinsic ge-
ometrical structure of the data manifold [2]. To overcome
the just mentioned limitation of NTF, we propose LPNTF
by incorporating a geometrically-based regularizer stem-
ming from locality preserving projections [7] into the op-
timization problem to be solved.

Given {Xq|Qq=1}, one can model the local structure of
A by constructing the nearest neighbor graph G. By ex-
ploiting the heat kernel function [7], one can define the ele-

ments of the weight matrix S of G as sqp = e−
||Xq−Xp||2

τ if
Xq and Xp belong to the same class and 0 otherwise, where
|| ||2 denotes the tensor norm [9]. Accordingly, the Lapla-
cian matrix is defined as L = Γ−S, where Γ is a diagonal
matrix with elements γqq =

∑
p sqp, i.e. the column sums

of S. Let Z(i) = U(N+1)¯ . . .¯U(i+1)¯U(i−1)¯ . . .¯
U(1). Since the Laplacian matrix is analogous to Laplace-
Beltrami operator on compact Riemannian manifolds [7],
one can incorporate the local geometry of A into NTF by
constructing the following objective function for LPNTF



in matrix form:

fLPNTF

(
U(i)|N+1

i=1

)
= ||A(i) −U(i)

[
Z(i)

]T ||2

+ λ tr
{[

U(N+1)
]T

L U(N+1)
}

, (1)

where λ > 0 is a parameter, which controls the trade off
between goodness of fit to the data tensor A and locality
preservation. Consequently, we propose to minimize (1)
subject to the non-negativity constraint on factor matrices
U(i) ∈ RIi×k

+ , i = 1, 2, . . . N +1, where k is the desirable
number of rank-1 tensors approximating A when linearly
combined.

Let∇U(i)fLPNTF = ∂fLP NT F

∂U(i) be the partial derivative
of the objective function fLPNTF (U(i)|N+1

i=1 ) with respect
to U(i). Since U(i), i = 1, 2, . . . , N + 1, Γ, and S are
non-negative, the partial derivatives of the objective func-
tion can be decomposed as differences of two non-negative
components denoted by∇+

U(i)fLPNTF and∇−
U(i)fLPNTF ,

respectively. It can be shown that for i = 1, 2, . . . , N we
have

∇U(i)fLPNTF = U(i)
[
Z(i)

]T
Z(i)

︸ ︷︷ ︸
∇+

U(i)fLP NT F

− A(i)Z(i)

︸ ︷︷ ︸
∇−

U(i)fLP NT F

, (2)

while for i = N+1 by invoking the definition of the Lapla-
cian we obtain

∇U(N+1)fLPNTF =

U(N+1)
[
Z(N+1)

]T
Z(N+1) + λ ΓU(N+1)

︸ ︷︷ ︸
∇+

U(N+1)fLP NT F

− (
A(N+1)Z(N+1) + λ S U(N+1)

)
︸ ︷︷ ︸

∇−
U(N+1)fLP NT F

. (3)

Following the strategy employed in the derivation of NMF
[10], we can obtain an iterative alternating algorithm for
LPNTF as follows. Given N +1 randomly initialized non-
negative matrices U(i)|N+1

i=1 ∈ RIi×k
+ , a local minimum

of the optimization problem (1) subject to non-negativity
constraints can be found by the multiplicative update rule:

U(i)
[t+1] = U(i)

[t] ∗
∇−

U
(i)
[t]

fLPNTF

∇+

U
(i)
[t]

fLPNTF

, (4)

where the division in (4) is elementwise and t denotes the
iteration index. The multiplicative update rule (4) suffers
from two drawbacks: (1) The denominator may be zero;
(2) U(i)

[t+1] does not change when U(i)
[t] = 0 and ∇U(i)[t]

fLPNTF < 0. In order to overcome these drawbacks, we
can modify (4) as in [11]. A robust multiplicative update
rule for LPNTF is then

U(i)
[t+1] = U(i)

[t] −
Ū(i)

[t]

∇+

U
(i)
[t]

fLPNTF + δ
∗ ∇

U
(i)
[t]

fLPNTF ,

(5)
where Ū(i)

[t] = U(i)
[t] if ∇

U
(i)
[t]

fLPNTF ≥ 0 and σ other-

wise. The paremeters σ, δ are predefined small positive
numbers, typically 10−8 [11].

4. SPARSE REPRESENTATION-BASED
CLASSIFICATION

For each music recording a 3D cortical representation is
extracted by employing the computational auditory model
of Wang et al. [17] with the same parameters as in [15].
Thus, each ensemble of recordings is represented by a 4th-
order data tensor, which is created by stacking the 3rd-
order feature tensors associated to the recordings. Con-
sequently, the data tensor A ∈ RI1×I2×I3×I4

+ , where I1 =
Iscales = 6, I2 = Irates = 10, I3 = Ifrequencies = 128,
and I4 = Isamples is obtained.

Determining the class label of a test cortical representa-
tion, given a number of labeled training cortical represen-
tations from N music genres is addressed based on SRC
[19]. Let us denote by Ai = [ai1|ai2| . . . |aini

] ∈ R7680×ni
+

the dictionary that contains ni cortical representations stem-
ming from the ith genre as column vectors (i.e., atoms).
Given a test cortical representation y ∈ R7680

+ that belongs
to the ith class, we can assume that y is expressed as a lin-
ear combination of the atoms that belong to the ith class,
i.e.

y =
ni∑

j=1

aij cij = Ai ci, (6)

where cij ∈ R are coefficients, which form the coefficient
vector ci = [ci1, ci2, . . . , cini ]

T . Let us, now, define the
matrix D = [A1|A2| . . . |AN ] = AT

(4) ∈ R
7680×Isamples

+

by concatenating Isamples cortical representations, which
are distributed across N genres. Accordingly, a test cor-
tical representation y that belongs to the ith genre can be
equivalently expressed as

y = D c, (7)

where c = [0T | . . . |0T |cT
i |0T | . . . |0T ]T is the augmented

coefficient vector whose elements are zero except those as-
sociated with the ith genre.

Since the genre label of any test cortical representation
is unknown, we can predict it by seeking the sparsest solu-
tion to the linear system of equations (7). Let ||.||0 be the
`0 quasi-norm of a vector, which returns the number of its
non-zero elements. Formally, given the matrix D and the
test cortical representation y, sparse representation aims to
find the coefficient vector c such that (7) holds and ||c||0 is
minimum, i.e.

c? = arg min
c
||c||0 subject to Dc = y. (8)

(8) is NP-hard due to the underlying combinational opti-
mization. An approximate solution to (8) can be obtained
by replacing the `0 norm with the `1 norm, i.e.

c? = arg min
c
||c||1 subject to D c = y, (9)

where ||.||1 denotes the `1 norm of a vector. The optimiza-
tion problem (9) can be solved by standard linear program-
ming methods in polynomial time [5].

Since we are interested in creating overcomplete dictio-
naries derived from the cortical representations, the dimen-
sionality of atoms must be much smaller than the training



set cardinality. Thus, we can reformulate the optimization
problem in (9) as follows:

c? = arg min
c
||c||1 subject to W D c = Wy, (10)

where W ∈ Rk×7680 with k ¿ min(7680, Isamples) is
a projection matrix. The projection matrix W can be ob-
tained by LPNTF or any other multilinear dimensionality
reduction technique, such as NTF [2], MPCA [12], GTDA
[20], or DNTF [21]. Alternatively, one can even employ
a random projection matrix whose elements are indepen-
dently sampled from a zero-mean normal distribution, and
each column is normalized to unit length as proposed in
[19]. More particularly, when LPNTF, NTF, or DNTF is
applied to the data tensor A, four factor matrices U(i) ∈
RIi×k

+ , i = 1, 2, 3, 4, are obtained, which are associated
to scale, rate, frequency, and sample modes respectively.
The projection matrix W is given by either W = (U(3) ¯
U(2)¯U(1))T or W = (U(3)¯U(2)¯U(1))†, where (.)†

denotes the Moore-Penrose pseudoinverse. Accordingly,
every column of D (i.e. vectorized cortical representation
of a music recording) is a linear combination of the ba-
sis vectors, which span the columns of the basis matrix
WT with coefficients taken from the columns of matrix
[U(4)]T . That is, D = AT

(4) = WT [U(4)]T . For MPCA or
GTDA, three factor matrices U(i) ∈ RIi×Ji , with Ji < Ii,
i = 1, 2, 3, are obtained, which are associated to scales,
rates, and frequencies, respectively. The columns of D are
obtained by applying the projection matrix W = (U(3) ⊗
U(2) ⊗ U(1))T or W = (U(3) ⊗ U(2) ⊗ U(1))† to vec-
torized training tensors vec(Xq). The dimensionality re-
duction of the original cortical representations data space
has two benefits: (1) It reduces the computational cost of
linear programming solvers for (9) [5]; (2) It facilitates the
creation of a redundant dictionary out of training cortical
representations.

A test cortical representation can be classified as fol-
lows. First, y is projected onto the reduced dimensionality
space through the projection matrix W as ŷ = Wy. Then,
the following optimization problem is solved

c? = arg min
c
||c||1 subject to W D c = ŷ. (11)

Ideally, the coefficient vector c? contains non-zero entries
in positions associated with the columns of WD associ-
ated with a single genre, so that we can easily assign the
test auditory representation y to that genre. However, due
to modeling errors, there are small non-zero elements in
c? that are associated to multiple genres. To cope with
this problem, each auditory modulation representation is
classified to the genre that minimizes the `2 norm residual
between ŷ and y̆ = W D ϑi(c), where ϑi(c) ∈ Rn is a
new vector whose non-zero entries are only the elements
in c that are associated to the ith genre [19].

5. EXPERIMENTAL EVALUATION

In order to assess both the discriminating power of the fea-
tures derived by LPNTF applied to cortical representations

for dimensionality reduction and the accuracy of sparse
representation-based classification, experiments are con-
ducted on two widely used datasets for music genre clas-
sification [3, 8, 14, 16]. The first dataset, abbreviated as
GTZAN, was collected by G. Tzanetakis [16] and consists
of 10 genre classes. Each genre class contains 100 audio
recordings 30 sec long. The second dataset, abbreviated
as ISMIR2004 Genre, comes from the ISMIR 2004 Genre
classification contest and contains 1458 full audio record-
ings distributed across 6 genre classes. All the recordings
were converted to monaural wave format at a sampling fre-
quency of 16 kHz and quantized with 16 bits. Moreover,
the music signals have been normalized, so that they have
zero mean amplitude with unit variance in order to remove
any factors related to the recording conditions. Since the
ISMIR2004 Genre dataset consists of full length tracks, we
extracted a segment of 30 sec just after the first 30 sec of
a recording in order to exclude any introductory parts that
may not be directly related to the music genre the recording
belongs to. The cortical representation is extracted for the
aforementioned segment of 30 sec duration for any record-
ing from both datasets. The best reported music genre
classification accuracies obtained for the aforementioned
datasets are summarized in Table 1.

Reference Dataset Accuracy
Bergstra et al. [3] GTZAN 82.5%
Holzapfel et al. [8] ISMIR2004 83.5%
Pampalk et al. [14] ISMIR2004 82.3%

Table 1. Best classification accuracies achieved by music
genre classification approaches on standard datasets.

Following the experimental set-up used in [3, 15, 16],
stratified 10-fold cross-validation is employed for experi-
ments conducted on the GTZAN dataset. Thus each train-
ing set consists of 900 audio files. Accordingly, the train-
ing tensor AGTZAN ∈ R6×10×128×900

+ is constructed by
stacking the cortical representations. The experiments on
ISMIR 2004 Genre dataset were conducted according to
the ISMIR2004 Audio Description Contest protocol. The
protocol defines training and evaluation sets, which consist
of 729 audio files each. Thus the corresponding training
tensor AISMIR ∈ R6×10×128×729

+ is constructed.
The projection matrix W is derived from each training

tensor AGTZAN and AISMIR by employing either LP-
NTF, NTF, DNTF, MPCA or GTDA. Throughout the ex-
periments the value of λ in LPNTF was empirically set
to 0.5, while the parameter τ of the heat kernel was set
equal to 1. In order to determine automatically the param-
eters λ and τ one can apply cross-validation to the training
set. However, the systematic setting of these parameters
could be a subject of future research. In order to deter-
mine the dimensionality of factor matrices, the ratio of the
sum of eigenvalues retained over the sum of all eigenvalues
for each mode-n tensor unfolding is employed as in [12].
By using this ratio as a specification parameter, the num-
ber of retained principal components for each mode (e.g.
scale, rate, and frequency) was determined, as is demon-
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Figure 1. Total number of retained principal components in each mode (e.g. rate, scale, and frequency) as a function of
the portion of total scatter retained for the: a) GTZAN dataset and b) ISMIR 2004 Genre dataset. Feature dimension as a
function of the portion of the total scatter retained for the: c) GTZAN dataset and d) ISMIR 2004 Genre dataset.

strated in Figure 1 for the GTZAN and the ISMIR Genre
2004 datasets. The different subspace analysis methods are
compared for equal dimensionality reduction. That is, the
same J1 = Jscales, J2 = Jrates and J3 = Jfrequencies

were used in MPCA and GTDA, while k = J1J2J3 for
LPNTF, NTF, and DNTF. The same value of parameter k
is used in order to construct the random projection ma-
trix. Since the low dimensional features obtained by the
aforementioned multilinear dimensionality reduction algo-
rithms are linearly combined for classification, SVMs with
linear kernel are tested as alternatives to SRC.

In Figure 2, the classification accuracy achieved by the
three different classifiers is plotted as a function of the por-
tion of the total scatter retained, when various subspace
analysis methods are applied to both GTZAN and ISMIR
2004 Genre datasets. On the GTZAN dataset the best clas-
sification accuracy (92.4%) was obtained when LPNTF ex-
tracts features, that are classified by SRC. In this case,
k = 135, as shown in Figure 1(c). The standard devia-
tion of the classification accuracy was estimated thanks to
10-fold cross-validation. At the best classification accu-
racy, its standard deviation was found to be 2%. The re-
ported classification accuracy outperforms those listed in
Table 1. The interval ± one standard deviation is overlaid
in all plots for the various values of the portion of the total
scatter retained.

On the ISMIR 2004 Genre dataset the best classification
accuracy (94.38%) was obtained, when the NTF with k =
135 extracts the low dimensional features that are classified
by SRC next. When the LPNTF with k = 105 extracts
features that are classified by SRC next, the classification
accuracy is found equal to 94.25%, that is very close to the
best accuracy. Both accuracies outperform the previously
reported ones, which are listed in Table 1.

It is seen that the classification accuracy obtained by
LPNTF and SRC outperforms the accuracy obtained with
features extracted by all other multilinear subspace analy-
sis techniques, which are next classified by either SRC or
linear SVMs, for all the values of the portion of the total
scatter retained but one. Moreover, the classification ac-
curacy obtained with features extracted by LPNTF, NTF,
MPCA or GTDA that are subsequently classified by SRC
exceeds 80% for both datasets despite the reduced dimen-
sions of the feature space extracted that are plotted in Fig-
ure 1(c) and (d). The experimental results reported in this
paper indicate that the dimensionality reduction is crucial,
when SRC is applied to music genre classification. This
was not the case for face recognition [19].

6. CONCLUSIONS

In this paper, a robust music genre classification frame-
work has been proposed. This framework resorts to corti-
cal representations for music representation, while sparse
representation-based classification has been employed for
genre classification. A multilinear subspace analysis tech-
nique (i.e. LPNTF) has been developed, which incorpo-
rates the underlying geometrical structure of the cortical
representations with respect to the music genre into the
NTF. The crucial role of feature extraction and dimension-
ality reduction for music genre classification has been dem-
onstrated. The best classification accuracies reported in
this paper outperform any accuracy ever obtained by state
of the art music genre classification algorithms applied to
both GTZAN and ISMIR2004 Genre datasets.

In many real applications, both commercial and private,
the number of available audio recordings per genre is lim-
ited. Thus, it is desirable that the music genre classifica-
tion algorithm performs well for such small sets. Future



78 80 82 84 86 88 90 92 94
30

40

50

60

70

80

90

100

Portion of total scatter retained (%)
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y 
(%

)

 

 

LPNTF
NTF
DNTF
MPCA
GTDA
Random

78 80 82 84 86 88 90 92 94
30

40

50

60

70

80

90

100

Portion of total scatter retained (%)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

LPNTF
NTF
DNTF
MPCA
GTDA
Random

(a) (b)

78 80 82 84 86 88 90 92 94
30

40

50

60

70

80

90

100

Portion of total scatter retained (%)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 
LPNTF
NTF
DNTF
MPCA
GTDA
Random

78 80 82 84 86 88 90 92 94
30

40

50

60

70

80

90

100

Portion of total scatter retained(%)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 
LPNTF
NTF
DNTF
MPCA
GTDA
Random

(c) (d)

Figure 2. Classification accuracy for various feature extraction methods and classifiers. (a) SRC on GTZAN dataset; (b)
SRC on ISMIR2004 Genre dataset; (c) Linear SVM on GTZAN dataset; (d) Linear SVM on ISMIR2004 Genre dataset.

research will address the performance of SRC framework
under such conditions.
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