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ABSTRACT

A novel framework for music structure analysis is proposed.
Each audio recording is represented by a sequence of au-
dio features, which capture the variations between differ-
ent music segments. Three different features are employed,
namely the mel-frequency cepstral coefficients, the chroma
features, as well as the bio-inspired auditory temporal mod-
ulations. By assuming that the feature vectors, extracted
from a specific music segment, are drawn from a single sub-
space, a feature sequence would lie in a union of as many
subspaces as the number of music segments is. Under the
aforementioned assumption, it has been shown that each
feature vector from a union of independent linear subspaces
has a sparse representation with respect a dictionary formed
by all other feature vectors, with the nonzero coefficients as-
sociated only to feature vectors that stem from its-own sub-
space. This sparse representation reflects the relationships
among the feature vectors and it is used to construct a simi-
larity graph, the so-called ℓ1-Graph. Thus, the segmentation
of the audio features is obtained by applying spectral clus-
tering on the adjacency matrix of the ℓ1-Graph. The perfor-
mance of the proposed approach is assessed by conducting
experiments on the PopMusic and the UPF Beatles bench-
mark datasets. The experimental results are promising and
validate the effectiveness of the approach, which does not
need training nor does need tuning multiple parameters.

1. INTRODUCTION

A music signal carries highly structured information at sev-
eral time levels. At the lowest level, structure is defined by
the individual notes, their timbral characteristics, as well as
their pitch and time intervals. At an intermediate level, notes
build relatively longer structures, such as melodic phrases,
chords, and chord progressions. At the highest level, the
structural description of an entire music recording or its mu-
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sical form emerges at the time scale of music sections, such
as intro, verse, chorus, bridge, and outro [16, 17].

The musical form of a recording is high-level information
that can be employed in several Music Information Retrieval
(MIR) tasks, such as music thumbnailing and summariza-
tion [3], chord transcription [12], music semantics learn-
ing and annotation [1], song segment retrieval [1], remix-
ing [9], etc. Consequently, the interest of MIR community
to the problem of automatic musical form or structural anal-
ysis has been increased as is manifested by the considerably
amount of research that has been done so far [1,9,10,16,19].
For a comprehensive review the interested reader is referred
to [6,17] (and the references therein). Although many meth-
ods have been employed in modern automatic music struc-
tural analysis systems, their majority applies a signal pro-
cessing stage followed by a representation stage. In the
first stage, low-level features sequences are extracted from
the audio signal in order to model its timbral, melodic, and
rhythmic content [17]. This is consistent with the findings
of Bruderer et al., who state that the perception of structural
boundaries in popular music is mainly influenced by the
combination of changes in timbre, tonality, and rhythm over
the music piece [2]. At the representation stage, a recur-
rence plot or a similarity matrix is analyzed in order to iden-
tify repetitive patterns in the feature sequences by employ-
ing Hidden Markov Models, clustering methods, etc. [6,17].

In this paper, an unsupervised method for automatic mu-
sic structure analysis is proposed. Each audio recording is
represented by a sequence of audio features aiming to cap-
ture the variations between different music segments. Since
the music structure is strongly determined by repetition, a
similarity matrix should be constructed and then analyzed.
The main novelty of the proposed method is that the simi-
larity matrix is built by adopting an one-to-all sparse recon-
struction rather than an one-to-one (i.e., pairwise) compar-
isons. By assuming that the feature vectors, that belong to
the same music segment, are drawn from a single subspace,
the whole feature sequence lies in a union of K subspaces,
where K is equal to the number of music segments. It has
been proved that, under the aforementioned assumptions,
each feature vector from a union of independent linear sub-
spaces has a sparse representation with respect a dictionary
formed by all the other feature vectors, with the nonzero



coefficients associated to feature vectors stemming from its-
own subspace [7]. Since this sparse representation reflects
relationships among the feature vectors, it is used to con-
struct a similarity graph, the so-called ℓ1-Graph [5]. The
segmentation of audio features is obtained then by apply-
ing spectral clustering on the adjacency matrix of ℓ1-Graph.
Apart from the conventional mel-frequency cepstral coef-
ficients and chroma features, frequently employed in mu-
sic structural analysis systems, the use of auditory temporal
modulations is also investigated here.

The performance of the proposed framework is assessed
by conducting experiments in two manually annotated bench-
mark datasets, namely the PopMusic [10] and the UPF Bea-
tles. The experimental results validate the effectiveness of
the proposed approach in music structural analysis reach-
ing the performance of the state-of-the-art music structural
analysis systems, without need of training and multiple pa-
rameters tuning.

The remainder of the paper is as follows. In Section 2,
the audio features employed are briefly described. The ℓ1-
Graph based music structural analysis framework is detailed
in Section 3. Datasets, evaluation metrics, and experimental
results are presented in Section 4. Conclusions are drawn
and future research direction are indicated in Section 5.

2. AUDIO FEATURES REPRESENTATION

Each 22.050-Hz sampled monaural waveform is parameter-
ized by employing three audio features in order to capture
the variations between different music segments. The fea-
ture set includes the auditory temporal modulations (ATMs),
the mel-frequency cepstral coefficients (MFCCs), and the
chroma features.

1) Auditory temporal modulations: The representation of
ATM is obtained by modeling the path of human auditory
processing and seems to carry important time-varying infor-
mation of the music signal [15]. The computational model
of human auditory system consists of two basic processing
stages. The first stage models the early auditory system,
which converts the acoustic signal into an auditory repre-
sentation, the so-called auditory spectrogram, i.e., a time-
frequency distribution along a logarithmic frequency axis.
At the second stage, the temporal modulation content of
the auditory spectrogram is estimated by wavelets applied
to each row of the auditory spectrogram. In this paper, the
early auditory system is modeled by employing the Lyons’
passive ear model [11]. The derived auditory spectrogram
consists of 96 frequency channels ranging from 62 Hz to
11 kHz. The auditory spectrogram is then decimated along
the time axis by a factor of 150 ms. The decimation allows
focusing on a more meaningful time-scale for music struc-
tural analysis. The underlying temporal modulations of the
music signal are derived by applying a wavelet filter along

each temporal row of the auditory spectrogram for a set of
8 discrete rates r, that are selective to different temporal
modulation parameters ranging from slow to fast temporal
rates (i.e., r ∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz) [15]. Con-
sequently, the entire auditory spectrogram is modeled by
a three-dimensional representation of frequency, rate, and
time, which is then unfolded along the time-mode in order
to obtain a two-dimensional (2D) ATM features sequence.

2) Mel-frequency cepstral coefficients: MFCCs param-
eterize the rough shape of spectral envelope [13] and thus
encode the timbral properties of signal, which are closely
related to the perception of music structure [2]. Follow-
ing [16], the MFCCs calculation employs frames of dura-
tion 92.9 ms with a hope size of 46.45 ms, and a 42-band
filter bank. The correlation between frequency bands is re-
duced by applying the discrete cosine transform along the
log-energies of the bands. The lowest coefficient (i.e., zero-
th order) is discarded and the 12 coefficients following are
retained to form the feature vector that undergoes a zero-
mean normalization.

3) Chroma: Chroma features are adept at characteriz-
ing the harmonic content of the music signal by projecting
the entire spectrum onto 12 bins representing the 12 dis-
tinct semitones (or chroma) of a musical octave [13]. The
chroma features are calculated using 92.9 ms frames with
a hope size of 23.22 ms as follows. First, the salience for
different fundamental frequencies in the range 80− 640 Hz
is calculated. The linear frequency scale is transformed into
a musical one by selecting the maximum salience value in
each frequency range corresponding to one semitone. Fi-
nally, the octave equivalence classes are summed over the
whole pitch range to yield a 12-dimensional chroma vector.

Finally, each of the aforementioned features is averaged
over the beat frames by employing the beat tracking algo-
rithm described in [8]. Thus, a set of beat-synchronous
tempo invariant features is obtained.

3. MUSIC STRUCTURE SEGMENTATION BASED
ON ℓ1-GRAPH

Since repetition governs the music structure, a common strat-
egy employed by music structural analysis systems is to
compare each feature vector of the audio recording with all
the other vectors in order to detect similarities. Let a given
audio recording be represented by a feature sequence of N
frames, that is {x1,x2, . . . ,xN}. In conventional music
structural analysis systems, the similarities between the fea-
ture vectors are measured by constructing the self-similarity
matrix (SDM) D ∈ RN×N with elements dij = d(xi,xj),
i, j ∈ {i, 2, . . . , N}, where d(·, ·) is a suitable distance met-
ric [9, 16, 17]. Common distance metrics employed are the
Euclidean (i.e., dE(xi,xj) = ∥xi − xj∥2) and the cosine

distance (i.e., dC(xi,xj) = 0.5(1− xT
i xj

∥xi∥2∥xj∥2
), where ∥.∥2



denotes the ℓ2 vector norm. However, the aforementioned
approach suffers from two drawbacks: 1) it is very sensitive
to noise, since the employed distance metrics are not robust
to noise and 2) the resulting SDM is dense and thus it can-
not provide locality information, which is valuable for the
problem under study.

In order to alleviate the aforementioned drawbacks, we
propose to measure the similarities between the feature vec-
tors in a one-to-all sparse reconstruction manner rather than
employ the conventional one-to-one distance approach, by
exploiting recent findings in sparse subspace clustering [7].

Formally, let a given audio recording of K music seg-
ments be represented by a sequence of N audio features of
size M , i.e., X = [x1|x2| . . . |xN ] ∈ RM×N . By assum-
ing that the feature vectors that belong to the same music
segment, lie into the same subspace, the columns of X are
drawn from a union of K independent linear subspaces of
unknown dimensions. It has been proved that each feature
vector from a union of independent linear subspaces has a
sparse representation with respect a dictionary formed by all
other feature vectors, with the nonzero coefficients associ-
ated to vectors drawn from its-own subspace [7]. Therefore,
by seeking this sparsest linear combination, the relationship
with the other vectors lying in the same subspace is revealed
automatically. A similarity graph built from this sparse rep-
resentation (i.e., the ℓ1-Graph [5]) is used then in order to
segment the columns of X into K clusters by applying spec-
tral clustering.

Let Xi = [x1|x2| . . . |xi−1|xi+1| . . . |xN ] ∈ RM×(N−1).
The sparsest solution of xi = Xic can be found by solving
the optimization problem:

argmin
c

∥c∥0 subject to xi = Xic, (1)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of the
non-zero entries of a vector. Finding the solution to the opti-
mization problem (1) is NP-hard due to the nature of the un-
derlying combinational optimization. An approximate solu-
tion to the problem (1) can be obtained by replacing the ℓ0
norm with the ℓ1 norm as follows:

argmin
c

∥c∥1 subject to xi = Xic, (2)

where ∥.∥1 denotes the ℓ1 norm of a vector. It has been
proved that if the solution is sparse enough, and M <<
(N−1), then the solution of (1) is equivalent to the solution
of (2), which can be solved in polynomial time by standard
linear programming methods [4]. The well-posedness of (2)
relies on the condition M << (N − 1), i.e., the sample
size must be much larger than the feature dimension. If the
ATMs used as audio representation, the sample size (number
of beats here) is not much larger than the feature dimension
(e.g. M = 768 and N ≈ 500 on average in the experiments
conducted). Thus c in no longer sparse. To alleviate this

problem, it has been proposed to augment Xi by a M ×M
identity matrix and to solve [20]:

argmin
c

∥c∥1 subject to xi = Bc, (3)

instead of (2), where B = [Xi | I] ∈ RM×(M+(N−1)).
Since the sparse coefficient vector c reflects the relation-

ships among xi and the remaining feature vectors in Xi,
the overall sparse representation of the whole feature se-
quence X can be summarized by constructing the weight
matrix W using Algorithm 1. W can be used to define the

Algorithm 1 ℓ1-Graph Construction [5].
Input: Audio feature sequence X ∈ RM×N .
Output: Weight matrix W ∈ RN×N .

1: for i = 1 → N do
2: B = [Xi | I].
3: argminc ∥c∥1 subject to xi = Bc.
4: for j = 1 → N − 1 do
5: if j < i then
6: wij = cj .
7: else
8: wij = cj−1.
9: end if

10: end for
11: end for

so-called ℓ1-Graph [5]. The ℓ1-Graph is a directed graph
G = (V,E), where the vertices of graph V are the N audio
feature vectors and an edge (ui, uj) ∈ E exists, whenever
xj is one of the vectors participating to the sparse represen-
tation of xi. Accordingly, the adjacency matrix of G is W.
Unlike the conventional SDM, the adjacency matrix W is
robust to noise. The ℓ1-Graph G is an unbalanced digraph.
A new balanced graph Ĝ can be built with adjacency matrix
Ŵ with elements ŵij = 0.5 (|wij | + |wji|), where |.| de-
notes the absolute value. Ŵ is still a valid representation of
the similarity between audio features vectors, since if xi can
be expressed as compact linear combination of some feature
vectors including xj (all from the same subspace - or mu-
sic segment here), then xj can also be expressed as compact
linear combination of feature vectors in the same subspace
including xi [7].

The segmentation of the audio features vectors can be ob-
tained by spectral clustering algorithms such as Normalized
Cuts [18] as illustrated in Algorithm 2.

4. EXPERIMENTAL EVALUATION

The performance of the proposed music structure analysis
system is assessed by conducting experiments on two man-
ually annotated datasets of Western popular music pieces.



Algorithm 2 Music Segmentation via ℓ1-Graph.
Input: Audio features sequence X ∈ RM×N and the
number of segments K .
Output: Audio features sequence segmentation.

1: Obtain the adjacency matrix W of ℓ1-Graph by
Algorithm 1.

2: Build the symmetric adjacency matrix of the new ℓ1-
Graph Ĝ: Ŵ = 0.5 · (|W|+ |WT |).

3: Employ Normalized Cuts [18] to segment the vertices
of Ĝ into K clusters.

Several evaluation metrics are employed to assess system
performance from different points of view.

4.1 Datasets

PopMusic dataset: PopMusic dataset [10] consists of 60
music recordings of rock, pop, hip-hop, and jazz. Half of the
recordings are from a variety of well-known artists from the
past 40 years, including Britney Spears, Eminem, Madonna,
Nirvana, etc. This subset is abbreviated as Recent hereafter.
The remaining 30 music recordings are by The Beatles. The
ground-truth segmentation of each song contains between 2
and 15 different segments classes. On average the number
of classes is 6, while each recording is found to contain 11
segments [1,10]. The subset contains the Beatles recordings
is referred ta as Beatles.

UPF Beatles dataset: The UPF Beatles 1 dataset con-
sists of 174 songs by The Beatles, annotated by musicolo-
gist Alan W. Pollack. Segmentation time stamps were in-
serted at Universitat Pompeu Fabra (UPF) as well. Each
music recording contains on average 10 segments from 5
unique classes [19]. Since all the recordings are from the
same band, there is less variation in musical style and tim-
bral characteristics than other datasets.

4.2 Evaluation Metrics

Following [1,9, 10,16,19], the segment labels are evaluated
by employing the pairwise F -measure, which is one of the
standard metrics of clustering quality. It compares pairs of
beats, which are assigned to the same cluster in the music
structure analysis system output against those in the refer-
ence segmentation. Let FA be the set of similarly labeled
pairs of beats in a recording according to the music structure
analysis algorithm, and FH be the set of similarly labeled
pairs in the human reference segmentation. The pairwise
precision, Ppairwise, the pairwise recall, Rpairwise, and the

1 http://www.dtic.upf.edu/ perfe/annotations/sections/license.html

pairwise F -measure, Fpairwise, are defined as follows:

Ppairwise =
|FA ∩ FH |

|FA|
, (4)

Rpairwise =
|FA ∩ FH |

|FH |
, (5)

Fpairwise = 2 · Ppairwise ·Rpairwise

Ppairwise +Rpairwise
. (6)

The average number of segments per song in each dataset is
reported as well.

The segment boundary detection is evaluated separately
by employing the standard precision, recall, and F -measure.
Following [1,10,16], a boundary detected the system is con-
sidered as correct if it falls within some fixed small distance
δ away from its reference, where each reference boundary
can be retrieved by at most one output boundary. Let BA

and BH denote the sets of segments bounds according to the
music structure analysis algorithm and the human reference,
respectively, then

P =
|BA ∩ BH |

|BA|
, (7)

R =
|BA ∩ BH |

|BH |
, (8)

F = 2 · P ·R
P+R

. (9)

In (4)-(9), |.| denotes the set cardinality. The parameter δ
is set to 3 sec in our experiments in order to compare our
results with those reported in [1, 10, 16].

4.3 Experimental Results

The structural segmentation is obtained by applying the pro-
posed framework to various feature sequences. Following
the experimental setup employed in [1, 9, 10, 16, 19], the
number of clusters K was set to 6 for the PopMusic dataset,
while K = 4 for the UPF Beatles dataset. For comparison
purposes, experiments are conducted by applying Normal-
ized Cuts [18] apart from the ℓ1-Graph and the SDM with
Euclidean distance metric computed for the three audio fea-
tures sequences. The structural segmentation results for the
PopMusic and the UPF Beatles datasets are summarized in
Table 1 and Table 2, respectively.

By inspecting Table 1 and Table 2 it is clear that the ℓ1-
Graph based segmentation outperforms the SDM based seg-
mentation in terms of pairwise F -measure for all the audio
features employed in both datasets. Moreover, the ATMs
offer a robust representation for the task of music structure
analysis, especially when employed in the construction of
the ℓ1-Graph.



Method/Reference Dataset Fpairwise Av. Segments
Beatles 0.6140 8.8333

ATM + ℓ1-Graph Recent 0.5885 12.6087
based segmentation PopMusic 0.5912 11.8679

Beatles 0.4029 199.3667
MFCCs + ℓ1-Graph Recent 0.3884 248.2826
based segmentation PopMusic 0.3966 239.6316

Beatles 0.4191 153.7667
Chroma + ℓ1-Graph Recent 0.3520 260.3043
based segmentation PopMusic 0.3900 200

Beatles 0.4243 145.7000
ATM + SDM Recent 0.3975 141.3913
based segmentation PopMusic 0.4027 125.5283

Beatles 0.3664 226.3667
MFCCs + SMD Recent 0.3663 305.9130
based segmentation PopMusic 0.3664 260.8868

Beatles 0.3499 220.4333
Chroma + SDM Recent 0.3312 276.1739
based segmentation PopMusic 0.3418 244.6226
[1] MFCCS unconstrained PopMusic 0.577 17.9
[1] MFCCS constrained PopMusic 0.620 10.7
[1] Chroma constrained PopMusic 0.51 12

Beatles 0.425 N/A
[10] K-means Recent 0.457 N/A
clustering PopMusic 0.441 N/A

Beatles 0.538 N/A
[10] Mean-field Recent 0.560 N/A
clustering PopMusic 0.549 N/A

Beatles 0.604 N/A
[10] Constrained Recent 0.605 N/A
clustering PopMusic 0.603 N/A

Table 1. Segment-type labeling performance on the Pop-
Music dataset.

Method/Reference Fpairwise Av. Segments
ATM + ℓ1-Graph based segmentation 0.5938 8.5215
MFCCs + ℓ1-Graph based segmentation 0.4664 181.9950
Chroma + ℓ1-Graph based segmentation 0.4563 116.2989
ATM + SDM based segmentation 0.4711 81.0376
MFCCs + SDM based segmentation 0.3985 190.5489
Chroma + SDM based segmentation 0.4066 167.9239
Method in [10] as evaluated in [16] 0.584 N/A
[16] 0.599 N/A
[19] 0.600 N/A
[9] 0.621 N/A

Table 2. Segment-type labeling performance on the UPF
Beatles dataset.

The best reported results on the PopMusic dataset are
obtained when the ATMs are employed for audio represen-
tation and the segmentation is performed on the ℓ1-Graph
defined by them. These results are comparable to the best
reported results by Levy and Sandler [10], while inferior to
those reported by Barrington et al. [1]. It is worth noting
that in the proposed framework, the clustering is performed
without any constraints, which is not the case for the best
results reported in [1, 10]. In an unconstrained clustering
setting, the proposed system outperforms the systems dis-
cussed in [1, 10].

In the UPF Beatles dataset, the best reported results are
obtained again when the ATMs are employed for audio rep-
resentation and the segmentation is perform on the ℓ1-Graph
constructed using W. The reported results are compara-
ble to those obtained by the state-of-the-art music structure
analysis on this dataset [16,19]. The proposed system is not
directly comparable to that in [9] due to the use of slightly
different reference segmentations.

Method/Reference Dataset F P R

ATM + ℓ1-Graph based segmentation PopMusic 0.5227 0.4737 0.6274
[1] MFCCS constrained PopMusic 0.610 0.620 0.650
[1] Chroma constrained PopMusic 0.420 0.410 0.460
EchoNest reported in [1] PopMusic 0.450 0.410 0.560
[10] K-means clustering PopMuic 0.437 0.809 0.311
[10] Mean-field clustering PopMusic 0.448 0.366 0.665
[10] Constrained clustering PopMusic 0.590 0.648 0.567
ATM + ℓ1-Graph based segmentation UPF Beatles 0.5304 0.5338 0.5670
Method in [10] as evaluated in [16] UPF Beatles 0.612 0.600 0.646
[16] UPF Beatles 0.55 0.521 0.612
[9] Timbre UPF Beatles 0.586 0.581 0.619
[9] Chroma UPF Beatles 0.500 0.465 0.522
[9] Timbre & Chroma UPF Beatles 0.536 0.49 0.55

Table 3. Boundary detection performance on the PopMusic
and the UPF Beatles dataset.

The average number of segments detected by our sys-
tem is 11.86 and 8.52, when according to the ground-truth
the actual average number of segments is 11 and 10 for the
PopMusic and the UPF Beatles dataset, respectively. This
result is impressive since no constraints have been enforced
during clustering.

The performance of the proposed system deteriorates when
either the MFCCs or the chroma features are employed for
audio representation. The low pairwise F -measure and the
over-segmentation can be be attributed to the fact that the
underlying assumptions do not hold for such representa-
tions.

Since the performance of our system is clearly inferior
when MFCCs or chroma features are employed for audio
representation, only the ATMs are employed in the segment-
boundary detection task. The boundary detection results are
summarized in Table 3 for both the PopMusic and the UPF
Beatles dataset. EchoNest refers to the commercial online
music boundary detection service provided by The Echonest
and evaluated in [1].

By inspecting Table 3, for music boundary detection, the
proposed system is clearly inferior to the system tested by
Levy and Sandler [10] on both datasets. The success of
the latter method can be attributed to the constraints im-
posed during the clustering, which is not our case. Con-
sequently, the results obtained by the proposed system in
music boundary detection could be considered as accept-
able, since such results still outperform those reported for
many other state-of-the-art approaches with or without im-
posing constraints (e.g., the EchoNest online service). It is
worth mentioning that neither of the methods appearing in
Table 3 approaches the accuracy of specialized boundary de-
tection methods, such as the method proposed in [14], which
achieves boundary F -measure of 0.75 on a test set simi-
lar to the Beatles subset of the PopMusic dataset. However
such boundary detection methods, do not model the music
structure and provide no characterization of the segments
between the boundaries as the proposed method as well as
the methods in [1, 9, 10, 16, 19] do.



5. CONCLUSIONS

A novel unsupervised music structure analysis framework
has been proposed. This framework resorts to ATMs for mu-
sic representation, while the segmentation is performed by
applying spectral clustering on the adjacency matrix of the
ℓ1-Graph. The method is parameter-free, since the only pa-
rameter needed be set is the number of music segments. The
performance of the proposed method is assessed by conduct-
ing experiments on two benchmark datasets used in the liter-
ature. The experimental results on music structure analysis
are comparable to those obtained by the state-of-the-art mu-
sic structure analysis systems. Moreover promising results
on music boundary detection are reported. It is believed that
by imposing constraints during clustering in the proposed
framework, both the music structure analysis and the mu-
sic boundary detection will be considerably improved. This
point will be investigated in the future. Another feature re-
search direction is to automatically detect the number of mu-
sic segments.
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