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ABSTRACT

Automatic music tagging is addressed by resorting to au-
ditory temporal modulations and Parallel Factor Analysis 2
(PARAFAC2). The starting point is to represent each music
recording by its auditory temporal modulations. Then, an
irregular third order tensor is formed. The first slice con-
tains the vectorized training temporal modulations, while
the second slice contains the corresponding multi-label vec-
tors. The PARAFAC2 is employed to effectively harness the
multi-label information for dimensionality reduction. Any
vectorized test auditory representation of temporal modula-
tions is first projected onto the semantic space derived via the
PARAFAC2 and the coefficient vector is obtained. Then, the
annotation vector is obtained by multiplying this coefficient
vector by the left singular vectors of the second slice (i.e., the
slice associated to the label vector). The proposed framework,
outperforms the state-of-the-art auto-tagging systems, when
applied to the CAL500 dataset in a 10-fold cross-validation
experimental protocol.

Index Terms— Automatic Music Tagging, Multi-label
Classification, PARAFAC2, Tensor Decompositions.

1. INTRODUCTION

The emergence of Web 2.0 has revealed the importance of the
automatic prediction of tags for music in large music database
management and music recommendation [1]. Tags are text-
based labels encoding semantic information related to music
(e.g., instrumentation, genres, emotions) [1, 2]. They result
into a semantic representation of music, which can be ex-
ploited by music oriented recommendation systems, such as
last.fm 1 and Pandora 2, assisting users to search for music
content. In particular, the users of the aforementioned sys-
tems can browse large music collections by employing tags
provided by other users. However, such an approach suffers
from two drawbacks. First, a newly added music recording
must be tagged manually, before it can be retrieved [2], which

1http://www.last.fm/
2http://www.pandora.com/

is a time consuming and expensive process. Second, unpopu-
lar music recordings may not be tagged at all [1]. Automating
music tagging may rectify the just mentioned drawbacks and
complement the set of tags provided by humans.

Music information retrieval research has mainly fo-
cused on content-based classification of music in terms of
genre [3, 4] and emotion [5], that effectively annotates music
with class labels, such as “rock”, “happy”, etc. However,
one should assume that a predefined taxonomy and an ex-
plicit mapping of a music recording onto mutually exclusive
classes exists. The latter assumptions are unrealistic since
the notion of music similarity is inherently subjective [6, 2].
A less restrictive approach is to annotate the audio content
with more than one labels in order to capture more aspects
of music. Various content-based automatic music tagging
systems have been proposed [1, 2, 6, 7, 8, 9, 10, 11, 12].
Most of the aforementioned systems resort to the so-called
bag-of-features approach [1], which models the audio signals
by the long-term statistical distribution of their short-time
spectral features. These features are then fed into machine
learning algorithms that associate tags with audio features.
For instance, audio tag prediction may be treated as a set
of binary classification problems, where standard classifiers,
such as the Support Vector Machines [8, 10] or Ada-Boost [7]
can be applied. Furthermore, methods have been proposed
that resort to probabilistic modeling [2, 12, 9]. These methods
attempt to infer the correlations or joint probabilities between
the tags and the low-level acoustic features extracted from
audio. Recently, we proposed an alternative framework to the
aforementioned automatic music tagging systems that resorts
to auditory temporal modulations for music representation,
while Sparse Multi-label Linear Embedding Nonnegative
Tensor Factorization (SMLENTF) was used to efficiently
harness the multi-label information for feature extraction
as well as multi-label music annotation by means of sparse
representations [11].

In this paper, a novel framework for automatic multi-label
music annotation is proposed. Following [11], each audio
recording is represented by its slow temporal modulations [4].
Such a representation emphasizes the temporal dynamics of
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the music signal and has been proved to be very robust for
both music genre classification [3, 4] and automatic music
tagging [11, 12]. However, the auditory temporal modula-
tions do not explicitly utilize the label set (i.e., the tags) of
the music recordings. Due to the semantic gap, it is unclear
how the semantic similarity between the label sets associated
to two music recordings can be exploited for efficient feature
extraction within multi-label music tagging. To this end, an
irregular third order tensor is formed. The first slice contains
the vectorized training temporal modulations, while the sec-
ond slice contains the corresponding multi-label vectors. The
goal is to infer the semantic relationships between the tempo-
ral modulations and the label set by computing the SVD for
each slice such that the matrix of right singular vectors is the
same across both slices. The just mentioned problem is solved
effectively via Parallel Factor Analysis 2 (PARAFAC2) [13].
This approach makes sense, since auditory temporal modula-
tions along with its corresponding multi-label vector are rep-
resented as linear combinations of basis vectors with coeffi-
cients taken from the same vector space. The left singular
vectors of the first slice span a lower-dimensional semantic
space dominated by the label information. Any vectorized
test auditory representation of temporal modulations is first
projected onto this semantic space and a coefficient vector is
obtained. Then, the annotation vector is obtained by multi-
plying the coefficient vector by the left singular vectors of the
second slice (i.e., the slice associated to multiple labels).
The performance of the proposed automatic music tag-

ging framework is assessed by conducting experiments on
the CAL500 dataset [2]. The reported experimental results
demonstrate the superiority of the proposed framework over
the state-of-the-art auto-tagging systems on the CAL500
dataset, when 10-fold cross-validation is applied.
The paper is organized as follows. In Section 2, basic mul-

tilinear algebra concepts and notations are defined. Themulti-
label annotation framework, that is based on the PARAFAC2
is detailed in Section 3. Experimental results are demon-
strated in Section 4 and conclusions are drawn in Section 5.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent of
matrices (i.e., second-order tensors) and vectors (i.e., first-
order tensors) [14]. Throughout the paper, tensors are de-
noted by boldface Euler script calligraphic letters (e.g. X),
matrices are denoted by uppercase boldface letters (e.g. U),
vectors are denoted by lowercase boldface letters (e.g. u),
and scalars are denoted by lowercase letters (e.g. u). The ith
row of U is denoted as ui: while its jth column is denoted
as u:j . ‖.‖F denotes the Frobenius matrix norm, while B†

denotes the Moore-Penrose pseudoinverse of B. Hereafter,
let Z and R denote the set of integer and real numbers, re-
spectively. A high-order real valued tensor X of order N is

defined over the tensor space RI1×I2×...×IN , where In ∈ Z

and n = 1, 2, . . . , N . Each element of X is addressed by
N indices, i.e., xi1i2i3...iN . Mode-n unfolding of tensor X
yields the matrix X(n) ∈ R

In×(I1...In−1In+1...IN ). In the fol-
lowing, the operations on tensors are expressed in matricized
form [14].

3. MULTI-LABEL ANNOTATION VIA PARAFAC2

Following [11], a two dimensional (2D) representation of its
slow temporal modulations is extracted with the same param-
eters as in [4, 11] for each audio recording. Thus, the ensem-
ble of I training recordings is represented by a third order data
tensor, which is created by stacking the second order feature
tensors associated to the recordings. Consequently, the data
tensor Y ∈ R

I1×I2×I
+ where I1 = Ifrequencies = 96 and

I1 = Irates = 8, is obtained. Let us also assume that the
multi-labels of the training tensor Y are represented by the
matrix C ∈ R

V ×I
+ , where V indicates the cardinality of the

tag vocabulary. Obviously, cki = 1 if the ith tensor is labeled
with the kth tag in the vocabulary and 0 otherwise. Since,
every tensor object (music recording here) can be labeled by
multiple labels, there may exist more than one non-zero ele-
ments in a label vector (i.e., c:i).
Subspace learning algorithms are required in order to map

the high-dimensional original feature space onto a lower-
dimensional semantic space defined by the labels. In conven-
tional supervised subspace learning algorithms (e.g., Linear
Discriminant Analysis) it is assumed that data points anno-
tated by the same label should be close to each other in the
feature space, while data bearing different labels should be far
away. However, this assumption is not valid in a multi-label
task. Accordingly, such subspace learning algorithms will
fail to derive a lower-dimensional semantic space based on
multiple labels.
To overcome the limitation of conventional subspace

learning algorithms, a novel application of PARAFAC2 [13]
to semantically oriented feature extraction and multi-label
multi-class classification problem is proposed here. Let
X

(1) = Y
T
(3) ∈ R

768×I
+ be the training matrix whose columns

are the vectorized auditory temporal modulations andX(2) =
C ∈ R

V×I
+ be the corresponding training tag-recording ma-

trix. Our goal is to derive a lower-dimensional semantic space
based on multiple labels using the PARAFAC2. The latter is a
variant of PARAFAC, a multi-way generalization of the SVD.
Formally, an irregular third order tensor X is formed. Its

first slice contains the vectorized training temporal modula-
tions (i.e., X(1)), while the second slice contains the corre-
sponding multi-label vectors (i.e., X(2)). Since X has two
slices, the PARAFAC2 seeks a decomposition of the form:

X
(n) = U

(n)
HS

(n)
W

T , n = 1, 2, (1)

where U(n) ∈ R
Jn×k, n = 1, 2 is an orthogonal matrix for

each slice, H ∈ R
k×k, S(n) ∈ R

k×k is a diagonal matrix of
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weights for the nth slice of X, andW ∈ R
I×k is the coeffi-

cient matrix, obviously J1 = I1 · I2 = 768 and J2 = V . The
decomposition (1) can be obtained by solving the optimiza-
tion problem:

argmin
U(n),H,S(n),W

2∑

n=1

‖X(n) −U
(n)

HS
(n)

W
T ‖2F . (2)

An effective algorithm for solving (2) can be found in [15].
Having found the decomposition (1), one can form B �

U
(1)

HS
(1) ∈ R

768×k
+ that spans a reduced dimension feature

space, where the semantic relations between the vectorized
tensor samples are retained. Given a vectorized test auditory
temporal modulations representation x ∈ R

768
+ the reduced

dimension feature vector x̃ = B
†
x ∈ R

k is derived.
By applying the PARAFAC2 on the training tensor, the

semantic relations between the label vectors are propagated
to the feature space through the common right singular vec-
tors. In music tagging, the semantic relations are expected
to propagate from the feature space to the label vector space.
Let us denote by a ∈ R

V×k
+ the label vector of the test music

recording, a is obtained by

a = U
(2)

HS
(2)

x̃. (3)

The labels associated with the largest values in a form the tag
vector recommended for the test music recording.

4. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed framework
in automatic music tagging, experiments were conducted on
the CAL500 dataset [2]. The CAL500 is a corpus of 500
tracks of Western popular music, each of which has been
manually annotated by three human annotators at least, who
employ a vocabulary of V = 174 tags. The tags used in
CAL500 dataset annotation span six semantic categories. All
the recordings were preprocessed as in [11].
Following the experimental set-up used in [2, 7, 9, 11], 10-

fold cross-validation was employed during the experimental
evaluation process. Thus, each training set consists of 450
recordings. All the test music recordings are annotated by
using (3). The length of the tag vector returned by the system
under study was 10. That is, each test music recording was
annotated with 10 tags. Three metrics, the mean per-word
precision and the mean per-word recall and the F1 score are
employed in order to assess the annotation performance of the
proposed automatic music tagging system whose definitions
can be found in [9, 11].
In Figure 1, the mean precision, the mean recall, and

the F1 score is plotted as a function of the feature space
dimensionality derived by the PARAFAC2 and the previ-
ous state-of-the-art auto-tagging system (i.e., the SMLENTF
[11]). Clearly, the PARAFAC2 outperforms the SMLENTF
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Fig. 1. Mean annotation results for the PARAFAC2 and the
SMLENTF with respect to (a) the mean precision, (b) the
mean recall, and (c) the F1 score on the CAL500 dataset.

for most of the reduced feature space dimension and espe-
cially the small one.
In Table 1, quantitative results on automatic music tagging

based on audio features only are summarized. Random refers
to a baseline system that annotates songs randomly based on
tags’ empirical frequencies. Even though the range of pre-
cision and recall is [0, 1], the aforementioned metrics may be
upper-bounded by a value less than 1 if the number of tags ap-
pearing in the ground truth annotation is either greater or less
than the number of tags that are returned by the automatic
music annotation system. Thus, UpperBnd indicates the best
possible performance under each metric. Random and Up-
perBnd were computed in [2] and give a sense of the actual
range for each metric. Human indicates the performance of
humans in assigning tags to the recordings of the CAL500
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dataset. The reported performance metrics are means and
standard errors (i.e., the sample standard deviation divided
by the sample size) inside parentheses computed from 10-
fold cross-validation with vocabulary size V = 174 on the
CAL500 dataset except for the auto-tagging systems HEM-
GMM and HEM-DTM, which have been evaluated using a
smaller vocabulary (i.e., 74 tags) and 5-fold cross-validation.

Table 1. Mean annotation results on the CAL500 Dataset.
System Protocol Precision Recall F1 Score

PARAFAC2 10FCV, V =174 0.392 (0.003) 0.176 (0.002) 0.243
SMLENTF [11] 10FCV, V =174 0.371 (0.003) 0.165 (0.002) 0.229
CBA [9] 10FCV, V =174 0.286 (0.005) 0.162 (0.004) 0.207
MixHier [2] 10FCV, V =174 0.265 (0.007) 0.158 (0.006) 0.198
ModelAvg [2] 10FCV, V =174 0.189 (0.007) 0.108 (0.009) 0.137
Autotag1 [7] 10FCV, V =174 0.281 0.131 0.179
Autotag2 [7] 10FCV, V =174 0.312 0.153 0.205

HEM-GMM [12] 5FCV, V =74 0.490 0.230 0.260
HEM-DTM [12] 5FCV, V =74 0.470 0.250 0.300
UpperBnd [2] 10FCV, V =174 0.712 (0.007) 0.375 (0.006) 0.491
Random [2] 10FCV, V =174 0.144 (0.004) 0.064 (0.002) 0.089
Human [2] 10FCV, V =174 0.296 (0.008) 0.145 (0.003) 0.194

By inspecting Table 1 and Figure 1, PARAFAC2 clearly
exhibits the best performance with respect to the per-word
precision and per-word recall, and F1 score among the state-
of-the-art auto-tagging systems, that is compared to, with re-
spect to 10-fold cross-validation. Better performancemay ob-
tained by preserving the nonnegativity of the auditory tem-
poral modulations or by adding more slices to the training
tensor, which can capture, for example, the lyrics content of
music recording or the contextual information of the tags, or
social networks indices.

5. CONCLUSIONS

An appealing automatic music tagging framework has been
proposed. This framework resorts to auditory temporal mod-
ulations for music representation, while the PARAFAC2 has
been employed for semantically oriented feature extraction
and multi-label music annotation. The results reported in the
paper outperform humans’ performance as well as any other
result obtained by the state-of-the-art auto-tagging systems
in the CAL500 dataset when 10-fold cross-validation is em-
ployed.
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