Recent Advances in Discriminant Non-negative
Matrix Factorization

Symeon Nikitidis, Anastasios Tefas and loannis Pitas
Department of Informatics, Aristotle University of Theksaki
Thessaloniki, Greece, 54124
Email: {nikitidis,tefas,pitat@aiia.csd.auth.gr

Abstract—Non-negative Matrix Factorization (NMF) is among its projections that optimize a given criterion. The reisgjt
the most popular subspace methods widely used in a variety of projections are then used in order to map unknown test
pattern recognition applications. Recently, a discriminant NMF facial images from the original high dimensional image spac

method that incorporates Linear Discriminant Analysis criteria . ¢ | di . | sub h th iteri d
and achieves an efficient decomposition of the provided data to Into a lower dimensional subspace, where the criterion unde

its salient parts has been proposed. An extension of this work consideration is optimized.

specialized for classification, optimized using projected gradients  |n this paper we briefly review NMF algorithm and its
in order to e';ﬁ“.re tconvfr:gg tof athstaltic:tnary limit pc;]i“tAreSU't_ed discriminant counterpart that incorporates Linear Disanant

in a more efficient method of the latter approach. Assumin T . .
multimodality of the underlying data samplgg distribution andg Ana,IYS'S critenia in F)rder to achlevg a mpre efficient decom-
incorporating clustering discriminant inspired constraints into  Position of the provided data to their salient parts. Moggpv
the NMF decomposition cost function, resulted in the Subclass we propose the Subclass Discriminant NMF algorithm which
Discriminant NMF algorithm which found to outperform both  is able to enhance class separability in the reduced dimen-
approaches under real life settings. In this work we review gjgnal projection subspace when data samples distribigion

all these methods in the context of various pattern recognition - . T .
problems using facial images. multimodal and demonstrate its optimization in two differe
frameworks.

I. INTRODUCTION

It is common knowledge that the spatial facial image dimen- Il. NMF BAsics
sionality is much higher than that exploited by many facial
image analysis applications. This fact necessitates té see!n the following, without losing generality, we shall asseim
for efficient dimensionality reduction methods for appiafe that the decomposed data are facial images. Obviously, the
facial feature extraction, which will alleviate computatal techniques that will be described can be applied to any kind
complexity and boost the performance of the succeedinglfac®f non-negative data. NMF approximates a facial image by a
features processing a|gorithms_ Such a popu|ar Categoryliaﬁar combination of elementS, the so called basis |magas,
methods, is the subspace image representation algoritffR&§espond to facial parts. Given a non-negative data matri
which aim to discover the latent facial features by projegti X € RI"" whose columns are vectorizel-dimensional
the facial image to a linear (or nonlinear) low dimensiondcial images, NMF attempts to perform the following fac-
subspace, where a certain criterion is optimized. torization:

Non—negative.Matrix Fgctorize}tion (NMF).[l]., is a popular X ~ ZH 1)
subspace learning algorithm widely used in image process-

ing. It is an unsupervised data matrix decomposition meth%EereZ c RJP;XM is a matrix containing the basis images,
W

ile matrix H € R}*" contains the linear combination
efficients required to reconstruct each original facisge.
0 measure the cost of the decomposition in (1), the most
mmon approximation error measures for NMF factorization
methods are the Kullback-Leibler (KL) divergence metriclan

. . . X . M8 he matrix Frobenius norm. The KL divergence between two
traditional dimensionality reduction methods, such aadtpal vectorsx — [x1 ...x|” andq = [¢1 ... qr]" is defined as:

Component Analysis (PCA), Independent Component Analy-

that requires both the data matrix being decomposed an
the yielding factors to contain non-negative elements. Tr&%
non-negativity constraint imposed in the NMF decompositi
implies that the original data are reconstructed using on
additive and no subtractive combinations of the yieldingiba

sis (ICA) or Singular Value Decomposition (SVD). s
Focusing on facial image analysis, numerous specialized KL(x||q) £ Z (xi mE ¢ — x£> . 2)
NMF decomposition variants have been proposed for face P Qi

recognition [2], [3], facial identity verification [4] andatial
expression recognition [5], [6]. In such applications timire Thus, the cost of the decomposition can be measured as the
facial image forms a feature vector and NMF aims to findum of all KL divergences between all original images and



their respective reconstructed versions: A. Discriminant NMF

I Discriminant Non-negative Matrix Factorization (DNMF)
O (X||ZH) = ZKL(X/HZ}]‘) _ ©) [4], [8] algorithm is an attempt to introduce discriminant
= e constraints in the NMF decomposition cost function. DNMF

aims to find projections that enhance class separabilitién t
Z i ; 1n(#) + Z Zikhig —Tij |- reduced dmenspna} p'rOjectlon.subspa.ce and basis imiages t
izl >k Zikhi . correspond to discriminant salient facial parts such as,eye
nose, mouth, eyebrows etc.
Frobenius norm measures the Euclidean distance between twm order to incorporate discriminant constraints into the
matricesA andB as: NMF decomposition, the well known Fisher discriminant
criterion [9] is exploited, given by:

L

J

IA=Bllr= > (Ai;—Bi;) 4) 0TS, ]
i J(W) = — (11)
tr[ o’ 3, v]
Consequently, the decomposition cost is evaluated as: where tf.] is the matrix trace operator. Fisher criterion at-
F tempts to find a transformation matnk, that maximizes the
Op(X[|ZH) = |X-ZH||} =) (x:;—[2ZH],;)* ratio defined by the traces of the between-class and within-
e class scatter matrices, = ¢/, ¥ and ¥, = ¥7'%,, ¥,

(5) respectively, both evaluated over the projected data. DNMF

cost function incorporates a discriminant factor, reaqugjrthe
where||.|| ¢ is the Frobenius norm. NMF algorithm factorizeslispersion of the projected samples that belong to the same
the data matrixX into ZH, by solving the following opti- class around their corresponding mean to be as small as

mization problem: possible, while at the same time the scatter of the meanngcto
of all classes around their global mean to be as large as

min O(X||ZH) (6) possible. Consequently, the DNMF algorithm that considers

subject to: 2z >0 Lhp, >0, Vi,jk. the KL-divergence metric to measure the decompositiorr,erro

minimizes the following cost function:
Considering the KL-divergence based NMF, it has been ShOW@DNMF(XHZH) = Ok (X||ZH) + atr[S,] — Btr[S)]
in [7] that using an appropriately designed auxiliary fuowct (12)
the following multiplicative update rules updafig,; andzix, where o and 8 are positive constants. Using a similar opti-
y|eld|n'g the desired factor.s, vyh|le guarantee a non INaNgas mization methodology as that followed by the NMF algorithm,
behavior of the cost function in (3): the multiplicative update rule shown in (13) evaluate the

(t—1) il weight coefficients ; that belong to the-th class. Parameter

(t) (t—1) 2%k S =l R T is defined as:

hey = D > L1 ’ ) .
i“ik _ r
30 Tij T = (20 +20) N Z hgct)\l) - 25#1& ‘-1 (14
Zj EJST 0D TN AEL
NORNRN Y 2o ki ®)
o o Zj h,(c“j where N,. denotes the number of samples of th¢h class

_ o S _ and yy, the k-th element of the mean vectqr(”) evaluated
Following a S|m|Iar_opt|m|zat|0n strategy, the d_eswedtdms over the projected samples of theth class. On the other
for the NMF algorithm based on the Frobenius norm, afgand, performing optimization with respect Zo leads to the

derived by: update formulae in (8) used by the original NMF algorithm,
)T since the incorporated discriminant factor is independem
B D) (207" X5 (9) the basis images matri.
kj T kg [Z(t—l)Tz(t—l)H(t—l)]kj’
[XH(t)T] ’ B. Subclass Discriminant NMF
) = 50 Z(t—l)H(t)Hz()t];T —. (10)  Unfortunately, the considered by DNMF discriminant factor
[ Jisk possesses certain shortcomings that arise from the LDA opti
lIl. DISCRIMINANT NMFE VARIANTS mality assumptions. That is, it assumes that the samplensect

of each class are generated from underlying multivariate
Next we will describe supervised NMF learning variant&aussian distributions having a common covariance matrix
that incorporate discriminant constraints in order to fdeva but with different class means. Moreover, since it regahds t
more efficient decomposition of the decomposed data to thegich class is represented by a single compact data cluster,
discriminant parts. the problem of nonlinearly separable classes cannot bedolv



T+ \/T2 +4 (2a — [2a+ 20] NLJ h;f,z_l) > Zl(,tk_l) D Z—ff’f)h(—un
n “i,n n,l

2 (2a — [2a + 28] NL) 43

However, this problem can be tackled if we consider that eauthere o and 3 are positive constants, whilg is used to

class is partitioned into a set of disjoint subclasses arfdpe simplify subsequent mathematical derivations. Conseityjen

a discriminant analysis aiming at subclass separationdsstw the new minimization problem is formulated as:

those belonging to different classes. Typically, in realrhdio .

applications, data usually do have a subclass structumedir ZH Ospnur(X||ZH) (18)

to overcome these deficiencies we have recently proposed the St zx >0 Lhy; >0, Vi, j,k,

Subclass Discriminant NMF (S_DNMF)_ a!go_rlthm [10]. which requires the minimization of (17) subject to the non-
To overcome th? aforementioned I|m|tat|ons, SDNMF 'Ye ativity constraints applied on the elements of both the

Iaxgs the assumption that each class is expected tq CQmS|s\RI8?ghtS matrixH and the basis images mat&

asingle compgct data cluster and regards that ‘?'ata insithe ea To solve the SDNMF constrained optimization problem we

class form various sybc!asses, where each.one is apprmm%troduce Lagrangian multipliers = [¢,,] € R**™ and

by a Ga_1u55|_an _dlst_rlbutlon. Consequently, it apprommﬁﬂes_ % = [b;4] € RM*L each one associated with constraints

underlylng_d|str|bufuo_n of eac_h cl_asg by_a mixture of Ga@ml 2k > 0 and hy; > 0, respectively. Thus, the Lagrangian

and exploits discriminant criteria inspired by the Clustgr fu’nction/: is formulated as:

based Discriminant Analysis (CDA) introduced in [11]. To

formulate the SDNMF problem we modify the NMF algorithme = O, (X||ZH) + “tr[S,,] - gtr[sb] +tr[pZ”T ] +tr[ypHT].

by embedding appropriate discriminant constraints andsadj 2 2 (19)

the cost function that drives the optimization process.sThConsequently, the optimization problem in (18) is equintle

extension provides discriminant projections that are et to the minimization of the Lagrangiatrg miél £. To minimize

o . . 7
to enhance class separability in the reduced d|menS|oaabsp£, we first obtain its partial derivatives with respect:tg and
when data samples distribution is multimodal. ’

. . - . h; ; and set them equal to zero:
To facilitate CDA in then-class facial image data matrix, let "’ a

i E oL iZk. i otr Sw

us denote the number of subclasses composing-theclass _ Z Lk,j =k, + Z i+ @ (S
by C,., the total number of formed subclasses @y where 0h; ; — 2k S 2 Oh;
C = I C;, and the number of facial images belonging to 3 otr[Sy)
the 6-th subclass of the-th class byN(,). Let us also - San. 0 (20)
define the projectegd-th facial image that belongs to tifeth or “o b oS,
subclass of the-th class by thel/-dimensional feature vector = — Z Tyl Z hji+ ¢ij + @ w

(r)(0) _ 1 (r)(8) (m)(OnT [ti b Vi h _ 6zi7j Ek Zi7kh/€,g ’ ’ 2 82’1-’]-
ny =10, ..., |" resulting by applying the trans ] ]
formationn{”? = Ztx("® and the mean vector for the _ BoulSy _ 21)
th subclass of the-th class by ()@ = [{"®  ,(@T 2 0z

which is evaluated over théV(, ) projected facial images. According to KKT conditions [12] it is valid thap; ;z; j = 0
Using the above notations we can define the within subclaasd alsoy; jh; ; = 0. Consequently, we obtain the following

scatter matrixS,, as: equalities:
n C. Ny - (%) hi; =0 — Z xkﬂizkhlh” + Z 2ihi
S, = ZZ Z (nﬁﬁ‘") _ u(’”)“’)) (nff“") _ u(’”)“’)) i — D 2kthe ,
r=10=1 p=1 ta (hi o (_r)(a)) hi i — B (e C—Chi
(15) g My 2 N('r-)_(e) H; ( ) hij

and the between subclass scatter mabijxas: n Cm
(m)g)y  _
I +6N o) Z ZM hij =0 (22)

n Cr T —

_ (D)(G) _ 4, (7)(0) (D)) _ 4, (r)(®) mm#r g=1
Si=3" 33N (WO = pO) (p0D) — ) .(M o
=1 5 s

=1 roreti =1 = 0e =y hjizi; = 0. (23
% rr#L g (16) 857;,]')27] lezkzi,khk,lZJ +zl: 4,1%4,j5 ( )

_Adding appropriate penalty terms in the NMF decompasjying the quadratic function fdr, ;, resulting from equation
sition the new cost function for the SDNMF problem i§22), leads to the multiplicative update rule shown in (2.
formulated as follows: the other hand, the update rule in (8) is directly derived by

@ 8 solving (23) forz; ;. In (24) h; ; denotes the-th feature ele-
Ospnur(X||ZH) = Ok (X]||ZH) + 5tr[Sw} - 5”[51@ (17) ment, in the projection subspace, of tjuth image belonging




9 _ 8 . 1 (t 1) (t— 1)zk—
A+ \/A +4 (a [OL + Ny (C Cr)} N(7»)(9)) Zk Z ;:nl)h(t 1)
ho : 7 (24)
(C- C’“)} Ner ><e>)

2 (a— [OH_ Nerycoy

to the 6-th subclass of the-th facial class andd is defined matrix Z and «; is the learning step parameter for theh

as: iteration.
3 1 (t-1) By iterating the update rule in (29), a sequence of min-
A = (04+ N (CCT)) > 'y imizers {Z()1>2, of 7,(Z) is generated and according to
(r ) (M) X Xz Bertsekas [15], it is guaranteed that a stationary poinus
among its limit points. Thus, in order to verify whether the
Z Z :u’zm)(g) L (25) currently reached limit point is stationary or not, a stasioty
DO i mztr g=1 check step [16] is performed, which examines whether the
As can be seen the developed multiplicative update rules f@flowing condition is satisfied:
the SDNMF algorithm consider not only sample class labels VP TZO)||p < ez]|VET(ZD)Y||p, (30)

but also their subclass origin.
whereV” 7,(Z®) is the projected gradient gf; (Z(), with

C. Projected Gradient DNMF respect toZ, with its (i, k)-th element defined as:
_ Recent studl_es [13], [1_4]_ regardlng the optimization prepeWPj (Z(t))]‘ _ [vjl(z(t))]i,k ’?f Zie >0
ties of the derived multiplicative update rules have resdal 1 ik min (0, [V (ZO)]ik)  if 20 =0

that they only guarantee a non increasing behavior of the (31)
considered cost function and do not ensure that optimizatignd ¢, is a predefined stopping tolerance satisfyifiy:<
converges to a limit point that is also stationary. In NMs&& ¢, < 1. A similar strategy is followed for the optimization
optimization problems, stationarity is an important pmtye of H solving the subproblem in (28). The iterative projected

since all relevant objective functions are non-convex &etlel gradient optimization framework generates a sequence of
is no guarantee that every limit point in a sequence of itemat minimizers{Z(t),H“)}f;l until the reached limit point is a

corresponds to a local minimum. stationary point of (18).
In order to exploit the well established optimization prop- The minimization of both subproblems in (27) and (28)

erties of [13], [14] that ensure stationarity of the reachegvolves the calculation of the first and second order gratdie
limit point, Projected Gradient DNMF (PGDNMF) has beewf 7,(Z) and 7>(H) which are evaluated as follows:
introduced in [6]. PGDNMF algorithm considers the followin

cost function: VJA(Z) = ZHH' — XH'" 4+ aVtr[S,] — BVIr[E,)]
(32)

where the within class scatter matr®,, and the between (33)

class scatter matriX;, are evaluated using vectaks = Z7x; Vh(MH) = ZTZH - 77X (34)

which are the actual features used for classification. Sihee 9 T
cost function in (26) is convex either f& or H but non- VihH) = Z°Z (39)
convex for both variables, we formulate two subproblems, Ryhere ® denotes the Kronecker product operation @pdis
keeping one variable fixed and performing optimization fog 37 x M identity matrix.

the other:
IV. EXPERIMENTAL RESULTS

mzinjl(z) subject to: 2z, 20, Vi k @D we compare the performance of the presented SDNMF

method, considering its multiplicative optimization upes
with those of the DNMF and the conventional NMF algorithms
for face recognition on the Extended Yale B database [17]
and for facial expression recognition on the Cohn-Kana8g [1

H%_ilnjg(H) subject to: hy ; >0, Vk,j. (28)

1) Optimization ofZ solving the subproblem (27)The
performed optimization is an iterative steepest descartgss

that at a given iteration rountthe following update rule is dataset.
applied: A. Facial Expression Recognition in the Cohn-Kanade (CK)
dataset

z® = P[Zt7Y — o, v 7 (207D, (29) _ _ _
The CK AU-Coded facial expression database is among

where the operatorP[.] = max].,0] guarantees that nothe most popular databases for benchmarking methods that
negative values can be assigned to the updated elementpaform automatic facial expression recognition. In ortter
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Fig. 1. Mean images for each expression considering thatfea@i expres- a5

sion class is partitioned into three subclasses. Mean imagederived from ‘ ‘ ‘ ‘ ‘
the two more distant subclasses inside every class. Thesdivkumination 20 o 60 80 100 120 140 160 180 200
conditions during facial expression capture in the CK dasabare evident. Projection Subspace Dimensionality

Average Recognition Accuracy Rate (%)

Fig. 2. Average facial expression recognition accuracgsatersus the
dimensionality of the projection subspace in CK database.

form our data collection we only acquired a single video feam

from each sequence, depicting a subject performing a fadil Face Recognition on the Extended Yale B database
expression at its highest intensity level. Consequendlgef pyiended Yale B database consists2fi14 frontal face
detection was performed and the resulting facial Regions (¥aqes of3s individuals, captured under various laboratory
Interest (ROIs) were manually aligned with respect to theynirolled lighting conditions. For our experiments we éav
eyes position and anisotropically scaled to a fixed size pihgomly selected for each subject half of the images for
30 x 40 pixels. In total 407 expressive images were acquirgghining, while the rest were used for testing. Searching
which were used to compose either the training or the tgg} the optimal projection subspace, we have trained NMF,
set. To measure the facial expression recognition accurag\MF and SDNMF algorithms considering subspaces of
we randomly partitioned the selected samples into 5'f°|‘3§mensionality varying fromi20 to 500. Moreover, since on
and a cross validation performed by feeding the projectggerage there are availabld images for each subject, thus
discriminant facial expression representations to a 1is3év approximately32 samples for each class for training, we

classifier. Consequently, the reported facial expres®eng- naye considered for the SDNMF algorithm that each class is

nition accuracy rat_g is thg mean vaIl_Je of_ the percentagescgfmposed by either two or three disjoint subclasses.

the correctly classified facial expressions in all 5-folds. Figure 3 shows the attained face recognition accuracy rates
It is important to note that CK database depicts subjeaté each examined method versus the projection subspace

of different racial background under severe illuminatiemia- dimensionality. NMF achieved a highest recognition rate of

tions. Consequently, the data sample vectors do not camelsp85.9% while, SODNMF considerin@ subclasses partitioning of

to one compact cluster per class, a fact that we expecteach class, attained the best performance among the exdamine

be successfully handled by the proposed SDNMF algorithmmethods reaching a recognition rate9@f7%. The maximum

To verify this, we have considered that each of the seveecognition rates for DNMF and SDNMF with, = 3 are

recognized facial expression classes namely: anger, dear, 89.5% and90.1%, respectively.

gust, happiness, sadness, surprise and neutral is pzetitio

into three subclasses and the mean expressive image for ev~s

subclass of each class is computed. Figure 1 shows the mg

image for each facial expression considering the two mog

distant subclasses inside every class. Clearly the illatiun

variations are captured during clustering.

90|

85,

80|

nition Accuracy R:

Since the available samples for each expression class
relatively few (around 50) we have considered only clasg
partitioning into two and three distinct subclasses. Fague "
2, shows the measured average facial expression recagnil % 50 w0 w % — a0 500
accuracy rates versus the projection subspace dimenisjonau ST Y
The highest measured recognition accuracy rate attainedfy/ 3. Face recognition accuracy rates versus the dimealitiorof the
the proposed method &.05%, while for the NMF algorithm projection subspace in the Extended Yale B database.
is 64.85%. Therefore, an increase by more thafo has
been achieved by incorporating the CDA inspired discrimina
constraints in the NMF cost function. As can be seen, in
Figure 2, SDNMF constantly outperforms both NMF and
DNMF methods, when considering projections in a subspaceln this paper we briefly reviewed NMF, DNMF and
of dimensionality greater than 100. PGDNMF algorithms and presented SDNMF method which

751

a--- DNMF
—— SDNMF Cr=2

—a— SDNMF Cr=3

V. CONCLUSION



addresses the general problem of finding discriminant projg18] T. Kanade, J. Cohn, and Y. Tian, “Comprehensive datatiaséacial
tions that enhance class separability by incorporating CDA expression analysis,” March 2000, pp. 46-53.

inspired criteria in the NMF decomposition. To solve the

SDNMF minimization problem, we developed multiplicative

update rules using an iterative Lagrangian solution. We-com

pared the performance of SDNMF algorithm with NMF and

DNMF on two popular datasets for facial expression and face

recognition. Experimental results verified the effecteesn of

the proposed method on both tasks.
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