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ABSTRACT

Non-negative Matrix Factorization (NMF) is among the most
popular subspace methods widely used in a variety of image
processing problems. Recently, a discriminant NMF method
that incorporates Linear Discriminant Analysis criteria and
achieves an efficient decomposition of the provided data to
its discriminant parts has been proposed. However, this ap-
proach poses several limitations since it assumes that the un-
derline data distribution forms compact sets which is oftenun-
realistic. To remedy this limitation we regard that data inside
each class form various number of clusters and apply a Clus-
tering based Discriminant Analysis. The proposed method
combines appropriate discriminant constraints in the NMF
decomposition cost function in order to address the problem
of finding discriminant projections that enhance class separa-
bility in the reduced dimensional projection space. Experi-
mental results performed on the Cohn-Kanade database ver-
ified the effectiveness of the proposed method in the facial
expression recognition task.

Index Terms— Non-negative matrix factorization, sub-
space methods, clustering discriminant analysis, facial ex-
pression recognition

1. INTRODUCTION

NMF [1] is a matrix decomposition algorithm that requires
both the data matrix being decomposed and the yielding fac-
tors to contain non negative elements. The non negativity
constraint imposed has been exploited by a variety of applica-
tions since many types of data in practical problems are non
negative. For instance, numerous NMF-based methods oper-
ating on data derived from text documents [2, 3] or images,
have been developed based on NMF in image processing and
pattern recognition and proved efficient compared with other
traditional dimensionality reduction algorithms.

Recently numerous practical applications have been pro-
posed, creating specialized NMF based algorithms applied
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in various problems in diverse fields. A supervised NMF
learning method that aims to extract discriminant facial parts,
is the Discriminant NMF (DNMF) algorithm proposed in
[4]. DNMF combines Fisher’s criterion in the NMF decom-
position and achieves a more efficient decomposition of the
provided data to its discriminant parts, thus enhancing sepa-
rability between classes compared with conventional NMF.
However, the incorporation of Linear Discriminant Analysis
(LDA) [5] inside DNMF poses certain deficiencies. More
precisely, there are two main disadvantages in this approach.
Firstly, LDA assumes that the sample vectors of the classes
are generated from underlying multivariate Normal distribu-
tions of common covariance matrix but with different means.
Secondly, since LDA assumes that each class is represented
by a single cluster, the problem of nonlinearly separable
classes can not be solved. Unfortunately, in real world ap-
plications, data distribution usually do not correspond to
compact sets.

To remedy the aforementioned limitations we relax the
assumption that each class is expected to consist of a single
compact cluster and regard that data inside each class form
various clusters, where each one is approximated by a Gaus-
sian distribution. Consequently, we approximate the under-
lying data samples distribution of each class as a mixture of
Gaussians and use the corresponding criteria from the Clus-
tering based Discriminant Analysis (CDA) introduced in [6].
By incorporating these discriminant constraints in the NMF
decomposition we derive the proposed method called Sub-
class Discriminant NMF (SDNMF). The SDNMF algorithm
addresses the general problem of finding discriminant projec-
tions that enhance class separability in the reduced dimen-
sionality projection space.

2. NMF BASICS

Focusing on the application of the NMF algorithm on facial
image data, NMF aims to approximate a facial image by a
linear combination of elements the so called basis images,
that correspond to facial parts. Thus, the non negativity con-
straints imply that the combinations of the multiple basis im-



ages are practically additions of ideally non-overlappingfa-
cial parts that attempt to reconstruct accurately the imagebe-
ing decomposed. LetI be a facial image database comprised
of L images belonging ton different classes andX ∈ RF×L

+

is the data matrix whose columns areF -dimensional feature
vectors obtained by scanning row-wise each facial image in
the database. Thusxi,j is thei-th element of thej-th column
vectorxj . NMF considers factorizations of the form:

X ≈ ZH (1)

whereZ ∈ RF×M
+ is a matrix containing the basis images,

while matrixH ∈ RM×L
+ contains the coefficients of the lin-

ear combinations of the basis images required to reconstruct
each original facial image in the database. Obviously, use-
ful factorizations for real world applications appear whenthe
linear subspace transformation projects data from the origi-
nalF -dimensional space to aM -dimensional subspace with
M ≪ F .

To measure the cost of the decomposition in (1), one pop-
ular approach is to use the Kullback-Leibler (KL) divergence
metric [7, 8]. Thus the cost of the decomposition in (1) can
be measured as the sum of all KL divergences between all
images in the database and their respective reconstructed ver-
sions, obtained from the factorization. Consequently, thecost
for factorizingX into ZH is evaluated as:

DNMF (X||ZH) =

L
∑

j=1

KL(xj ||Zhj) =

=

L
∑

j=1

F
∑

i=1

(
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zi,khk,j − xi,j

)

. (2)

Using the Expectation Maximization (EM) algorithm
and an appropriately designed auxiliary function, it has been
shown in [9] that the following multiplicative update rules
updatehk,j andzi,k, yielding the desired factors, while guar-
antee a non increasing behavior of the cost function in (2).
The update rule for thet-th iteration forh(t)

k,j is given by:

h
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while for z(t)
i,k the update rule is given by:

ź
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Finally, the basis images matrixZ is normalized so that its
column vectors elements sum up to one:

z
(t)
i,k =

ź
(t)
i,k

∑

l ź
(t)
l,k

. (5)

3. PROPOSED METHOD

In this section we present the performed clustering based dis-
criminant analysis and demonstrate how the derived discrim-
inant constraints are incorporated in the NMF decomposi-
tion cost function creating the proposed SDNMF optimization
problem. Next, we derive the proposed multiplicative update
rule that optimize SDNMF.

3.1. Clustering based Discriminant Analysis

To facilitate CDA in then-class facial image databaseI, let
us denote the number of clusters composing ther-th class by
Cr, the total number of formed clusters in the database by
C, whereC =

∑n
i Ci, and the number of facial images be-

longing to theθ-th cluster of ther-th class byN(r)(θ). Let
us also define the mean vector for theθ-th cluster of ther-
th class byµ(r)(θ) = [µ

(r)(θ)
1 . . . µ

(r)(θ)
M ]T which is evalu-

ated over theN(r)(θ) facial images, while vectorη(r)(θ)
ρ =

[η
(r)(θ)
ρ,1 . . . η

(r)(θ)
ρ,M ]T corresponds to the feature vector of the

ρ-th image of theθ-th cluster of ther-th class. Using the
above notations we can define the within cluster scatter ma-
trix Sw as:

Sw =

n
∑

r=1
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∑

θ=1

N(r)(θ)
∑

ρ=1

(

η(r)(θ)
ρ − µ(r)(θ)

)(

η(r)(θ)
ρ − µ(r)(θ)

)T

(6)
and the between cluster scatter matrixSb as:

Sb =
n
∑

i=1

n
∑

r,r 6=i
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j=1
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∑

θ=1

(

µ(i)(j) − µ(r)(θ)
)(

µ(i)(j) − µ(r)(θ)
)T

.

(7)
Matrix Sw represents the scatter of sample vector coeffi-

cients around their cluster mean. It is rationale to desire the
dispersion of those samples that belong to the same cluster of
a certain class to be as small as possible, since this would de-
note a high concentration of these samples around their clus-
ter mean and consequently, more compact clusters formation.
In order to measure the samples dispersion inside clusters we
compute the trace of the within cluster scatter matrixSw. Fur-
thermore, matrixSb defines the scatter of the mean vectors be-
tween all clusters that belong to different classes. To separate
clusters belonging to different classes we desire to maximize
the mean difference between every cluster of a certain class
to every cluster of each other class. Therefore, the trace ofSb

is desired to be as large as possible.

3.2. Subclass Discriminant Non-negative Matrix Factor-
ization (SDNMF)

In order to incorporate clustering based discriminant con-
straints derived from the performed CDA in the NMF de-
composition, we reformulate the NMF cost function adding



appropriate penalty terms. Since we desire the trace of ma-
trix Sw to be as small as possible and at the same time the
trace ofSb to be as large as possible, the new cost function is
formulated as:

DSDNMF (X||ZH) = DNMF (X||ZH)+
α

2
tr[Sw]− β

2
tr[Sb]

(8)
whereα andβ are positive constants, tr[.] is the trace opera-
tor, while 1

2 is used to simplify subsequent derivations. Con-
sequently, the new minimization problem is formulated as:

min
Z,H

DSDNMF (X||ZH)

subject to: zi,k ≥ 0 , hk,j ≥ 0,
∑

i

zi,k = 1,∀i, j, k.

(9)

which requires the minimization of (8) subject to the non-
negativity constraints applied on the elements of both the
weights matrixH and the basis images matrixZ.

The constrained optimization problem in (9) is solved by
introducing Lagrangian multipliersφ = [φi,k] ∈ RF×M and
ψ = [ψj,k] ∈ RM×L each one associated with constraints
zi,k ≥ 0 andhk,j ≥ 0, respectively. Thus the Lagrangian
functionL is formulated as:

L = DNMF (X||ZH)) +
α

2
tr[Sw] − β

2
tr[Sb] +

+
∑

i
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α

2
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2
tr[Sb] +

+ tr[φZ
T ] + tr[ψH

T ]. (10)

Consequently, the optimization problem in (9) is equivalent to
the minimization of the Lagrangianarg min

Z,H
L. To minimize

L, we first obtain its partial derivatives with respect tozi,j and
hi,j and set them equal to zero:
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According to KKT conditions [10],φi,jzi,j = 0 and also
ψi,jhi,j = 0. Consequently, we obtain the following equali-

ties:
(
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Solving the resulting from equation (12) quadratic function
for hi,j , leads to the proposed multiplicative update rule for
the weight coefficients which for thet-th iteration is defined
as:
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,

hi,j denotes thej-th feature element of theρ-th image belong-
ing to theθ-th cluster of ther-th facial class andA is defined
as:

A =

(

α+
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N(r)(θ)
(C − Cr)

)

1
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∑
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The update rule forzi,j is directly derived by solving (13) and
is the same as in (4).

4. EXPERIMENTAL RESULTS

We compared the performance of the proposed SDNMF
method with the DNMF and the conventional NMF algo-
rithm on the facial expression recognition problem using the
popular Cohn-Kanade [11] database. In order to form the
training and test sets, face detection was performed and the
resulting Regions Of Interest (ROIs) were manually aligned
with respect to the eyes position. Each facial image in the
database was isotropically scaled, so as to have fixed size of
30 × 40 pixels (where 30 and 40 are the columns and rows
of the image, respectively) and was converted to grayscale.
Each such fixed size facial image was scanned row-wise so
as to form a feature vectorx = [f1 . . . f1200]

T (fi being the



luminance of thei-th pixel) which is used to form the training
and test sets.

We have performed 5-fold cross-validation on the avail-
able data samples where the training set was used in order
to learn the basis images for the low dimensional projection
space while the test set to report the facial expression recogni-
tion accuracy rates in the respective learned projection space.
Classification was performed by feeding the projected to the
lower dimensional discriminant facial expression representa-
tions to a linear SVM classifier.
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Fig. 1. Average facial expression recognition accuracy rate
versus the dimensionality of the projection subspace in the
Cohn-Kanade database.

Figure 1 shows the average expression recognition accu-
racy rates versus the projection subspace dimensionality.The
highest measured recognition rates achieved by each exam-
ined method, as well as, the respective subspace dimension-
ality are summarized in Table 1. As it can be seen SDNMF
outperforms both NMF and DNMF methods.

Table 1. Best average expression recognition accuracy rates
in Cohn-Kanade database

Subspace
Method Accuracy Rate Dimensionality

SDNMF Cr = 2 69.05% 190
SDNMF Cr = 3 68.31% 182

DNMF 66.08% 166
NMF 64.85% 134

5. CONCLUSIONS

We proposed a novel method that addresses the general prob-
lem of finding discriminant projections that enhance class
separability by incorporating CDA in the NMF decomposi-
tion. To solve the SDNMF problem, we develop a multiplica-
tive update rule that considers not only samples class origin

but also clusters formation inside each class. We compared
the performance of SDNMF algorithm with NMF and DNMF
and the experimental results verified the effectiveness of the
proposed method in the facial expression recognition task.
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