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ABSTRACT in various problems in diverse fields. A supervised NMF

Non-negative Matrix Factorization (NMF) is among the most'€&Ming method that aims to extract discriminant faciatfa
popular subspace methods widely used in a variety of imagl§_the Discriminant NMF (DNMF) algorithm proposed in
processing problems. Recently, a discriminant NMF method*l: PNMF combines Fisher's criterion in the NMF decom-
that incorporates Linear Discriminant Analysis criteriada POSition and achieves a more efficient decomposition of the

achieves an efficient decomposition of the provided data t8"0Vided data to its discriminant parts, thus enhancingsep
its discriminant parts has been proposed. However, this af@Pility between classes compared with conventional NMF.
proach poses several limitations since it assumes thatrthe uHOWeVer, the incorporation of Linear Discriminant Anaysi
derline data distribution forms compact sets which is oten  (LDA) [5] inside DNMF poses certain deficiencies. More
realistic. To remedy this limitation we regard that datddes Precisely, there are two main disadvantages in this approac
each class form various number of clusters and apply a Clu&rStly, LDA assumes that the sample vectors of the classes
tering based Discriminant Analysis. The proposed metho@'® 9enerated from underlying multivariate Normal distrib
combines appropriate discriminant constraints in the NMmgions of common covariance matrix but with dlffe.rent means.
decomposition cost function in order to address the probleny€condly, since LDA assumes that each class is represented
of finding discriminant projections that enhance classsepa PY @ single cluster, the problem of nonlinearly separable
bility in the reduced dimensional projection space. ExperiCl2Sses can not be solved. Unfortunately, in real world ap-
mental results performed on the Cohn-Kanade database vétications, data distribution usually do not correspond to

ified the effectiveness of the proposed method in the facidfoMPact sets. _ S
expression recognition task. To remedy the aforementioned limitations we relax the

) ) o assumption that each class is expected to consist of a single
Index Terms— Non-negative matrix factorization, sub- ¢omnact cluster and regard that data inside each class form
space methods, clustering discriminant analysis, facial e various clusters, where each one is approximated by a Gaus-

pression recognition sian distribution. Consequently, we approximate the under
lying data samples distribution of each class as a mixture of
1. INTRODUCTION Gaussians and use the corresponding criteria from the Clus-

tering based Discriminant Analysis (CDA) introduced in.[6]

NMF [1] is a matrix decomposition algorithm that requires By incorporating these discriminant constraints in the NMF
both the data matrix being decomposed and the yielding fagtecomposition we derive the proposed method called Sub-
tors to contain non negative elements. The non negativit¢|ass Discriminant NMF (SDNMF). The SDNMF algorithm
constraintimposed has been exploited by a variety of applic addresses the general problem of finding discriminant proje
tions since many types of data in practical problems are nofions that enhance class separability in the reduced dimen-
negative. For instance, numerous NMF-based methods op&fionality projection space.
ating on data derived from text documents [2, 3] or images,
have been developed based on NMF in image processing and
pattern recognition and proved efficient compared with othe 2. NMF BASICS
traditional dimensionality reduction algorithms.

Recently numerous practical applications have been prd-ocusing on the application of the NMF algorithm on facial
posed, creating specialized NMF based algorithms applietihage data, NMF aims to approximate a facial image by a

The research leading to these results has received fundimgthe Euro- linear combination of elements the so called basis Images,

pean Community’s Seventh Framework Programme (FP7/2007-208) u that.corr'espond to facial parts- .Thus, the non negatiVit}‘ co
grant agreement’r211471 (i3DPost). straints imply that the combinations of the multiple basis i




ages are practically additions of ideally non-overlappisg 3. PROPOSED METHOD
cial parts that attempt to reconstruct accurately the intege
ing decomposed. L& be a facial image database comprisedin this section we present the performed clustering based di
of L images belonging te different classes anX € RfXL criminant analysis and demonstrate how the derived discrim
is the data matrix whose columns dredimensional feature inant constraints are incorporated in the NMF decomposi-
vectors obtained by scanning row-wise each facial image ition cost function creating the proposed SDNMF optimizatio
the database. Thus ; is thei-th element of thg-th column  problem. Next, we derive the proposed multiplicative updat
vectorx,;. NMF considers factorizations of the form: rule that optimize SDNMF.

X ~ ZH (1)

3.1. Clustering based Discriminant Analysis
REXJVI

whereZ € is a matrix containing the basis images, . . -
. . MxL : . . To facilitate CDA in then-class facial image databa%e let
while matrixH € R,”*" contains the coefficients of the lin-
us denote the number of clusters composingttie class by

ear com_b!natmns_ of_the ba_S|s images required to_ recomstru&, the total number of formed clusters in the database by
each original facial image in the database. Obviously, use-

A o C, whereC = "7 C;, and the number of facial images be-
ful factorizations for real world applications appear wilea
. . ; . longing to thed-th cluster of ther-th class byN(,)). Let
linear subspace transformation projects data from the-orig .
: ) . : ... ~us also define the mean vector for th¢h cluster of ther-
nal F-dimensional space to &/-dimensional subspace with (r)(8) (r)(0) (MONT i g
M<F. th class byu = [ .y 1" which is evalu-
ial i i (r)(0)
To measure the cost of the decomposition in (1), one popted aover thd\g( ) facial images, while vecton,,
ular approach is to use the Kullback-Leibler (KL) divergenc [n,(ff( ) 77; ])V(, )] corresponds to the feature vector of the
metric [7, 8]. Thus the cost of the decomposition in (1) canp-th image of thef-th cluster of ther-th class. Using the
be measured as the sum of all KL divergences between albove notations we can define the within cluster scatter ma-
images in the database and their respective reconstrueted vtrix S,, as:
sions, obtained from the factorization. Consequentlyctist

. . . . n Cp Ny
for factorizingX into ZH is evaluated as: _ Z Z ( ()(®) (T)(9)> ( 6) _ (T)(9)>
L r=16=1 p=1
Dyur(X||ZH) = Z L(x,||Zh;) (6)
j=1 and the between cluster scatter magjxas:
L
Il] n n C; C
x; )+ Zigkhi; —Tij |- L s . s . T
;; ( J Zk zi Kl Z ! ) =y (“mm — u ><9)) (umm — >(e))
i=1 r,r#£i j=1 0=1
Using the Expectation Maximization (EM) algorithm @)

and an appropriately designed auxiliary function, it hasrbe Matrix S., represents the scatter of sample vector coeffi-
shown in [9] that the following multiplicative update rules cients around their cluster mean. It is rationale to desiee t

updateh; ; andz; i, yielding the desired factors, while guar- dispersion of those samples that belong to the same cluster o
antee a non increasing behavior of the cost function in (2)a certain class to be as small as possible, since this would de

The update rule for theth iteration forh,if)j is given by: note a high concentration of these samples around thei clus
ter mean and consequently, more compact clusters formation
> zl.(f,c’l) (tfigh(t,l) In order to measure the samples dispersion inside cluseers w
h,(f)] — h,(f;.l) Z(t s bi (3)  compute the trace of the within cluster scatter masijx Fur-
’ ’ i Zik thermore, matrixs, defines the scatter of the mean vectors be-
tween all clusters that belong to different classes. Torse¢pa
while for z{") t « the update rule is given by: clusters belonging to different classes we desire to maemi
) o the mean difference between every cluster of a certain class
S0 _ -1 > th to every cluster of each other class. Therefore, the trasg of
Zik = Zi 0 = (4)  is desired to be as large as possible.
225 s
Finally, the basis images matri& is normalized so that its 3.2. Subclass Discriminant Non-negative Matrix Factor-
column vectors elements sum up to one: ization (SDNMF)
@ '<t> In order to incorporate clustering based discriminant con-
Zif = (t) (5)  straints derived from the performed CDA in the NMF de-

2% ke composition, we reformulate the NMF cost function adding



appropriate penalty terms. Since we desire the trace of maies:
trix S,, to be as small as possible and at the same time the r
trace ofS; to be as large as possible, the new cost function is (8h ) hij =0 — Z Tk, Rk hij + Z cihi

formulated as: i.j >z b
(o 8 9
a 8 + a (hu — " )) hig — 35— u(C = Cp) b
DspynmrF (X| ‘ZH) = DN]VIF(X| |ZH) + §t|’[sw] — Etr[Sb] (r)(0)
(8) B A )

wherea and 3 are positive constants[fris the trace opera- T Ny Z Z i hi; =0 (12)
tor, While% is used to simplify subsequent derivations. Con- momeEr g=1

sequently, the new minimization problem is formulated as: ar . Ve Z zithyy . +Z . .

) 9zi5) " ; Sop zighey z pEhg
1%111_1;1 Dspnur(X||ZH) (13)
Subjectto: 2. >0 e, > 0, Zzz L= 1Y, Solving the resulting from equation (12) quadratic functio

for h; ;, leads to the proposed multiplicative update rule for
the weight coefficients which for thieth iteration is defined
as:

9

(9)

which requires the minimization of (8) subject to the non- ) A+VAZLT

negativity constraints applied on the elements of both the %7 — (a _ [a+ (C - ‘)} 1 )

weights matrixH and the basis images mati#x Ny "1 Neveo
The constrained optimization problem in (9) is solved by

i i i inli — . FxM

introducing Lagrangian multiplieré = [¢; 1] € R and where T — 4 <a B {a N Ié; c_c. } 1 ) .

(14)

¥ = [¢;r] € RM*L each one associated with constraints Niryo) Niryo)
Zik > 0 a.ndh,w» > 0, respectively. Thus the Lagrangian (t—1) (t—1) Tk
function £ is formulated as: i, sz (t— 1)h(t 1’
k En kn
L = Dyur(X||ZH)) + gtr[Sw] — gtr[Sb] + h;i,; denotes thg-th feature element of theth image belong-
2 2 ing to thed-th cluster of the--th facial class andl is defined
+ ZZdH,kzv,k + Zz¢jvkhjvk = as:
ik ik 3 1
o) Ié; A= (a + (C - C’T)> —_ hia
£ = Dyur(X[|ZH)) + Str[Sy] — SU[Sy] + Ny Ny A%j
+ tr[pZ”] + trlypyHT). (10)
Z Z (m)(9) _1. (15)
Consequently, the optimization problem in (9) is equivéten m,mzr g=1

the minimization of the Lagrangiaig min £. To minimizé  The update rule foz; ; is directly derived by solving (13) and

L, we first obtain its partial derivatives with respectig and  is the same as in (4).
hi ; and set them equal to zero:

4. EXPERIMENTAL RESULTS

oL Tk i 2k o Otr[S
D = Z Zlk;k zkhzj +ZZl,i + i+ 3 a}[Lij] We compared the performance of the proposed SDNMF
’ ! ' method with the DNMF and the conventional NMF algo-
_ é 3”[517] —0 rithm on the facial expression recognition problem usirg th
2 Ohi popular Cohn-Kanade [11] database. In order to form the
oL x; zhj . a 6tr[S ] training and test sets, face detection was performed and the
0z - Z Sp Zikhi + Z hja+ ¢ij + 2 0z, resulting Regions Of Interest (ROIs) were manually aligned
with respect to the eyes position. Each facial image in the
B 3”[517] _o. (11) database was isotropically scaled, so as to have fixed size of
2 0z 30 x 40 pixels (where 30 and 40 are the columns and rows

of the image, respectively) and was converted to grayscale.
According to KKT conditions [10],¢; ;2; ; = 0 and also Each such fixed size facial image was scanned row-wise so
;. jhi; = 0. Consequently, we obtain the following equali- as to form a feature vector = [f ... fi200]” (f; being the
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Average Recognition Accuracy Rate (%)

luminance of the-th pixel) which is used to form the training but also clusters formation inside each class. We compared

and test sets. the performance of SDNMF algorithm with NMF and DNMF
We have performed 5-fold cross-validation on the avail-and the experimental results verified the effectivenestef t

able data samples where the training set was used in ordproposed method in the facial expression recognition task.

to learn the basis images for the low dimensional projection
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