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ABSTRACT set of disjoint clusters and perform a discriminant analysi
aiming at clusters separation. Unfortunately, in real dorl

Non-negative Matrix Factorization (NMF) is among the most plications, data usually do not correspond to compast set

popular subspace methods, widely used in a variety of imagge; * " . ) . i
processing problems. To achieve an efficient decompositio .h.|s is also a common case in the. facial expression recog
of the provided data to its discriminant parts, thus enhanci hition problem, since there is no unique way that people ex-

classification performance, we regard that data inside ea g&)srscglrjt;']naimgts'gntsei?udrem:rgg?iv irt’irghe\gr?art?oagn;j%;?dmg
class form clusters and use criteria inspired by Clusterin pose, gning ’

based Discriminant Analysis. The proposed method ComFE_Zi;icantly degrade the performance of NMF-based methods

bines these discriminant criteria as constraints in the NM T dv the af ioned limitati lax th
decomposition cost function in order to address the problem '0 réme ?’]t ea (r)]re{nent!one |m|t3t|ons, we re ant e
of finding discriminant projections that enhance class sep@>SSuUmption that each class Is expected to consist of a sin-
rability in the reduced dimensional projection space. Tée d 9'€ compact cluster and regard that data inside each class

veloped algorithm has been applied to the facial expressioﬁ’rm variogs C!gStS*fS’ where each Ione is approximat(rehg by a
recognition problem and experimental results verified hat Gaussian distribution. Consequently, we approximateie u

successfully identified discriminant facial parts, thusamc-  derlying distribution of each class as a mixture of Gaussian
ing recognition performance. and imply criteria inspired by the Clustering based Disérim

nant Analysis (CDA) introduced in [5]. Moreover, we extend
the NMF algorithm modifying its decomposition by embed-
1. INTRODUCTION ding appropriate discriminant constraints and reforneuaé
NMF [12], is an unsupervised matrix decomposition algo-C0St function that drives the optimization process. Witk th
rithm that requires both the data matrix being decomposefXt€nsion we expect the resulting discriminant projeatjon
and the yielding factors to contain non negative elementd!om one hand, to pose robustness in illumination changes
The non negativity constraint imposed in the NMF decom-2nd variations in expression and on the other hand, to en-
position implies that the original data are reconstructidg ~hance class separability in the reduced dimensional space.
only additive and no subtractive combinations of the yield-SCIVe the resulting optimization problem, we develop multi
ing basic elements. This limitation distinguishes NMF fromPlicative update rules that consider not only samples class
many other traditional dimensionality reduction algamity ~ ©igin but also clusters formation inside each class. _
such as, Principal Component Analysis (PCA) [10], Inde- The rest of the paper is organized as follows. A brief
pendent Component Analysis (ICA) [6] or Singular Value review of the NMF algorithm is given in Section 2. Sec-
Decomposition (SVD) [9]. tion 3, introduces the proposed method which incorporates
Recently, numerous specialized NMF-based algorithm§ubclass discriminant constraints in the NMF decompasitio
have been proposed applied in various problems in diverséamework and also, draws the proposed multiplicative up-
fields. These algorithms are developed based on modifying]ate rules. Section 4, describes the conducted experiments
the NMF decomposition cost function by incorporating addi-that verify the efficiency of our algorithm on the facial ex-
tional penalty terms in order to fulfill specific requiremgnt Pression recognition problem.  Finally, concluding rensark
arising in each application domain. A supervised NMF learn&re drawn in Section 5.
ing method that aims to extract discriminant facial parts is
the Discriminant NMF (DNMF) algorithm proposed in [15]. 2. BRIEF REVIEW OF NMFE
DNMF incorporates Fisher’s criterion in the NMF factor-
ization and achieves a more efficient decomposition of thén this section we briefly present the NMF decomposition
provided data to its discriminant parts, thus enhancing seponcept. In the following, without loosing generality, wélw
arability between classes compared with conventional NMFassume that the decomposed data are facial images. Obvi-
However, the incorporation of Linear Discriminant Analy- ously, the techniques that will be described can be apptied t
sis (LDA) [8] inside DNMF poses two certain deficiencies. any kind of non negative data.
Firstly, LDA assumes that the sample vectors of each class The basic idea of NMF is to approximate a facial image
are generated from underlying multivariate Normal distfsib by a linear combination of basic elements the so called basis
tions of common covariance matrix but with different meansimages, that correspond to facial parts. The non negativity
Secondly, since LDA assumes that each class is representednstraints imply that the combinations of the multipleibas
by a single cluster, the problem of nonlinearly separablémages are practically additions of ideally non-overlagpi
classes can not be solved. However, this problem can Hacial parts that attempt to reconstruct accurately the-com
tackled if we consider that each class is partitioned into glete facial image. Let be a facial image database com-



prised ofL images belonging ta different classes and €  while guarantee a non increasing behavior of the cost func-
R <! is the data matrix whose columns dfedimensional tion O(X||ZH) defined in (3). The update rule for theh
feature vectors obtained by scanning row-wise each facigeration forh") is given by:

image in the database. Th1q§ is thei-th element of thg-th ki

column vector;. NMF considers factorizations of the form: [Z(‘*l)TX]

®) _ pt-D) ki
X ~ ZH ) i = M ZE VT ZEHD), ©)

whereZ € R.*M is a matrix containing the basis images
while matrixH € RMXL contains the coefficients of the lin-
ear combinations of the basis images required to recorstruc
each original facial image in the database. Thusjtkiefa-

cial image, represented by vectey, can be approximated
after the NMF decomposition by the factorizatimpz Zhj,
whereh; denotes thg-th weight column of matrid. Un- 3. PROPOSED METHOD
doubtedly, useful factorizations for real world applicats
appear when the linear subspace transformation projetes d
from the originalF-dimensional space to ldl-dimensional
subspace withl < F.

'while for 2!) the update rule is given by:

.
N [XHO Jik
KTk [z(tfl)H(t)H(UT]i k‘

(6)

In this section we present the imposed clustering based dis-
%riminant criteria and demonstrate how these are incorpo-
rated in the NMF decomposition cost function creating the

T th tof the d ition in (1 roposed Subclass Discriminant NMF (SDNMF) optimiza-
o0 measure the cost of the decomposition in (1), 0ne P,y hroplem. Next, we derive the proposed multiplicative
ular approach is to use the Kullback-Leibler (KL) divergenc update rules that solve SONMF

metric which is a special case of Bregman distances [1].
However, using this metric to measure the decompositiqn €31 Clustering based discriminant analysis
ror in (1) poses some certain deficiencies. More precisely, ; ]
the decomposition cost is not well defined at any point ofSimilarly to LDA, CDA seeks to determine a transformation
the bounded region, since the natural logarithm functien inmatrix such that when applied on the initial input data the
volved in the KL divergence evaluation is undefined for zergesulting transformed samples form classes in the projecti
arguments. This fact introduces the limitation to requisthb ~ Subspace that are better separated. To do so, CDA assumes

elementsx . and [ZH]; : to be strictly positive and conse- that data inside classes do not correspond to compact sets,
quently 6 zero values are allowed. but each class is partitioned into one or more clusters and

To overcome this deficiency we use the square of th@ttempts to discriminate classes while at the same time min-

Frobenius norm in order to measure the NMF decompositioHTiZ€S the scatter within every cluster.

error. The Frobenius norm measures the Euclidean distance N detail, CDA exploits the Fisher-Rao’s criterion mod-
between two matriced andB as: ified such as the between and within cluster scatter matri-

ces are evaluated considering except of samples class label
2 their respective cluster origins. To formulate the CDAerit
IA=Bllg=,/> (Ai.j - Bi7j) : (2)  ria in then-class facial image databaselet us denote the
L number of clusters composing theh class byC;, the to-

o tal number of formed clusters in the databaseChywhere
Thus the cost of the decomposition in (1) can be measured gs_ $NC., and the number of facial images belong%g to the

the sum of the square Euclidean distances between all imaggsy, ¢lyter of the-th class by, ., . Let us also define the
in the database and their respective reconstructed version (r)(6)

obtained from the factorization. Consequently, the castfu mean vector for thé-th cluster of the-th class bym)(®) =
tion O(X||ZH) that defines the approximation error of fac- [m{"(®)...mD(®)T which is evaluated over thd, o fa-

A ; : ' 1
torizing X into ZH s evaluated as: cial images, while vectox(")(®) = [xﬁ)r)l(e) - XOTT corre-

P ) .
) L F 2 sponds to the feature vector of tpeth facial image of the
OX|ZH) = [X-ZH[E=}) Zl(xu - [ZH]i,j) 6-th cluster of the'-th class. Using the above notations we
j=1i= can define the within cluster scatter mat$iy as:
2
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where||.||¢ is the Frobenius norm. Thus the NMF algorithm _ (7)
factorizes the data matriX into ZH, by solving the follow- ~ and the between cluster scatter magjxas:

ing optimization problem:

| nn&GG ) (1)) (1) _ m((®)
an,IIrI]O(XHZH) 4) Sb:izlr;uzlezl(m —m )(m - )

subjectto:  z, >0 ,hkao, Vi, j, k. (8)
’ ' Since NMF projects the initial data to a lower dimen-

Using an appropriately designed auxiliary function, itsional subspace using the pseudo-invétse- (Z'Z)~1ZT
has been shown in [13] that the following multiplicative up- we desire to perform this projection in a discriminant man-
date rules updatbk’j and Z o yielding the desired factors, nerand enhance class separability in the projection sabspa

T



To do so, we apply CDA inspired criteria in order to deter-Alternatively, the SDNMF cost function can be written using
mine the optimum projection. Thus, we desire the projectednatrices trace form as follows:
facial images to the lower dimensional subspace to maxi-

mize the CDA criterion which we formulate evaluating the Ognue (X||1ZH) = }Tr [(X-ZH)(X -ZH)"] +
within and between cluster scatter matrices in the prajacti

subspace. More precisely, the within cluster scatter matri a B 1 T T

>, when operates on the projected samples in the lower dit 7 /12wl = 5 T3] = STIXX'] - TrZHX ]+
mensional subspace is transformed with respect to its-previ 1 - a B

ous form as:Zy, = (Z')" SwZ', while the between cluster +STMZHAZ'] + 5 TrEw] - 5 Tr[5,) (12)

scatter matrix asx, = %ZT)T S,Z'. Let us define the pro-

jectedp-th facial image by thé1-dimensional feature vector
p pl T pM Consequently, the new minimization problem is formu-

formationhg)(e) = ZTxg)<9>. Using the above notations we lated as:

can evaluate the within cluster scatter maffly; in the pro- .

jection subspace as: Q}g‘omNMF (X[|ZzH) (13)

subjectto:  z,>0 ,h ;>0 Vi jk

where we have applied the matrix propertie§AIB] =

r)(6)
=1

n G N
szrzlezl z

N
) ~(r)® ) ~(r)®
(hg>( ) —m >) (hg>( )= >) which requires the minimization of (11) subject to the non-

) negativity constraints applied on the elements of both the
weights matrixH and the basis images matt#x
In order to solve the optimization problem in (13), we
follow a similar approach as that in [13]. It should be noted
that as in every NMF-based optimization problem the objec-

n n G G o o T
~ ~ (1)(0)) [ ~ (1)(8
Eb:_Z Z?t ZSZ (mm(]) —m" )) (m(lm —m"l )) tive function in (11) is convex either i or in H, but non-
I=rrAij=16=1 (10) convex in both variables. Therefore, we do not expect the

where theM-dimensional mean vectora are evaluated over optimization process of the SDNMF algorithm to reach the
. () global minimum. Instead, the proposed iterative optimiza-
the projected samples an&'V!)) denotes the mean vec-

tor evaluated over the proiected samples composind-the tion algorithm can be used to find a local minimum. To do
: Proj P P 9 so, the proposed process successively optimizes eithier var
cluster of the-th class.

Matrix X\, represents the scatter of the projected samplgtblez or H keeping the other fixed.

vector coefficients around their cluster mean. Itis rationag 3 pqate Rules Derivation for the Optimization of the

to desire after the projection, the dispersion of those #&8np spNME Problem

that belong to the same cluster of a class to be as small as pos- . L )
sible, since this would denote a high concentration of thesi order to solve the constrained qpt|m|zatF|orh1A problem in
samples around their cluster mean and consequently mofé3) we introduce Lagrange multipliexs € R7*M = [u; ]
compact clusters formation. In order to measure the samandv € R¥~t = [v; ] each one associated with each non-

ples dispersion inside clusters we compute the trace of thgegativity constraint fow,, > 0 andh, ; > 0, respectively.

within cluster scatter matri®,,. Furthermore, matrixs, Consequently, we formulate the Lagrangian functioms
defines the scatter of the mean vectors between all cIuste]rg”ows.

that belong to different classes. To separate clustersgelo

(
P

and the between cluster scatter mahlx as:

ing to different classes we desire to maximize the diffeeenc 1 T T ToT
between the means of every cluster of a certain class to evk = éTr[XX | =TrzHX ]+ ETr[ZHH Z'+
ery cluster of each other class. Therefore, the tradg,pis a B
desired to be as large as possible. + ETr[EW] - ETr[Eb] + ; U Zk+ Zvath =

B Jv
3.2 Subclass Discriminant Non-negative M atrix Factor- 1 - o1 T
ization Algorithm = ETV[XX |- Tr[ZHX "]+ QTV[ZHH Z')+
In order to incorporate clustering based discriminant con- o B T T
straints derived from CDA in the NMF decomposition, we re- + S TrEw] = STr(E [+ TruZ ]+ TrlvH']. (14)

formulate the NMF cost function adding appropriate penalty S ) ) . )
terms. Since we desire in the projection subspace the tradée optimization problem in equation (13) is equivalent to
of matrix 3, to be as small as possible and at the same timéhe minimization of the Lagrangian function azr%rmn To

the trace o, to be as large as possible, the cost function ofinimize L, we first obtain its partial derivatives with respect
the SDNMF algorithm is formulated as: 07, andhkj and set them equal to zero:

adTr[Ey] B ITr[%,)]
KIT2 oh 2 ohy

1 o B
Ogone (XIIZH) = 5[|X — ZH|[E + S T[] - 5 TT([,)

(11)
wherea andf3 are positive constants, [Trdenotes the trace
operator, while is used to simplify subsequent derivations. [ZHH] ik [XHT]i’k'F U, =0. (15)

(2T ZH], ;- [Z"X] +Vj=0



According to KKT conditions [7] it is valid that, \ z |, = 4. EXPERIMENTAL RESULTS

0 and alsoy ;h, ; = 0. Consequently, we obtain the follow- |, yhig section we evaluate the performance of the proposed

ing equalities: SDNMF method compared with the DNMF and the conven-
oL tional NMF algorithm on the Cohn-Kanade [11] facial ex-

( ) hkj — 0= [ZT ZH], j hkj — [ZTX]k jhkj + pression database. Figure 1 shows example images, from the

0hk, i examined dataset, depicting the six basic facial exprassio
. B o arranged in the foIIovying order: anger, fear, Qisgust, rapp
+a (hk)j — "t )) he;— mm}(’)( Jc-coh, + ness, sadness, surprise and the neutral emotional state.

B3 Jraon — » 1 ;
+ h —0 (16) o S e e S =)
Nio) q,éerg;mk “l SRS As A A

oL
(ﬁ) =0 [ZHHT 2~ [XHyz, = 0. (17)

Solving equation (16) fohkj we derive the proposed multi-
plicative update rule:

Figure 1: Sample images depicting the different facial ex-
pressions from the Cohn-Kanade database.

In order to form the training and test sets, face detec-

_nT e
) - (2D X, + N(f(e> @ c-c) tion was performed and the resulting Regions Of Interest
h|(<)1 = hf(J* ) T TT——" (18)  (ROIs) were manually aligned with respect to the eyes posi-
' Z ZUUHT T+ tion. Each extracted facial image was anisotropicallyetal

so as to have fixed size of 3040 pixels (where 30 and 40

whereAis defined as: are the columns and rows of the image, respectively) and

(1) ~r)(6) n G (@) was converted to grayscale. Consequently, each facial im-
A=a (hk, i My )+ N e age was scanned row-wise so as to form a feature vector
(r)(6) a,a7rg=1 x = [f;... 104", (f; being the luminance of thieth pixel)

o . Regarding the training and test sets formation, 5-fold
the update rule for the basis images mafias: cross validation has been performed using the availabke dat

[XH<I)T]_ ‘ samples. Apparently, the training set has been used to learn
) =2 =T IEt)T (19) the basis images for the low dimensional projection space,
’ [z HYH ]i,k while the test set has been used to report the facial expres-

After we obtain the optimum factors, SDNMF necessi-SIoN recognition accuracy rates in the respective learned p
tates to use the pseudo-inve®k= (ZTZ)~1ZT of the basis jection space. Training and testing have been performed by

images matrixZ, in order to extract the discriminant features '€€ding the projected discriminant facial expression eepr

and compute the projection to the lower dimensional featuréf':'t!ﬂ'tat'0”S to a linear SVMdC|aS§I]erI’. Confeque?tly, re?OQT
space for an unknown test sampigas: x; — Ztx.. How-  hition accuracy is measured as the percentage of samples in
J ! the test set which were correctly classified. The reported av

- i T whict ;

ever, as it has been shown in [3], can be also used as an grage classification accuracy rate is the mean value of the
appropriate alternative for this purpose, since the catmnt  hercentages of the correctly classified facial expressions

of Z" is not only a computationally intensive task but alsogych fold. Parameters and B value was defined experi-
may suffer from numerical instability. _ mentally. We have found that the optimal values in terms

. We can successively updafeandH either until the ob- 4t measured classification accuracy rates and convergence
jective function does not achieve any significant improve-speed where achieved whenand 8 were set in the inter-
ment or when a predefined maximum number of iterations iga (0, 1]. Moreover, in all circumstances these parameters
reached. Since the added discriminant factors in the SDNMEp g1 be carefully defined such as to ensure convexity of the
cost function are totaly independent from the basis imagegptimization subproblem.

matrix Z, keeping variablé fixed and optimizing foiZ re- Figure 2 shows the average expression recognition accu-
sults to the same optimization problem as thus optimized by, ¢y rates versus the projection subspace dimensioriahity.

the original NMF algorithm in [13] and consequently, leadsyighest measured recognition rates achieved by each exam-
to exactly the same update formulae. Thus, we can recall theeq method, as well as, the respective subspace dimension-
convergence proof of conventional NMF to show that (11) ISality are summarized in Table 1. As it can be seen SDNMF

non-increasing under the update rules in (19). The intedest outperforms both NMF and DNMF methods.
reader is referred to [13] for more details. The proposed mul

tiplicative update rule in (18) is also guaranteed to cause a 5. CONCLUSION

non increasing behavior of the objective function. Therinte '

ested reader is referred to [4, 14] for a detailed proof bgar We proposed a novel method that addresses the general prob-
ing convergence to a local minimum of other similarly de-lem of finding discriminant projections that enhance class
rived updates. Moreover, when setting parametets@ =0  separability in the reduced dimensional space by incotpora

it is obvious that the SDNMF algorithm degenerates to theng CDA in the NMF decomposition. To solve the SDNMF
original NMF method and the update rule in (18) reduce tgroblem, we develop a multiplicative update rule that consi
that of equation (5). ers not only samples class origin but also clusters formatio
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Figure 2: Average facial expression recognition accuratsy r

versus the dimensionality of the projection subspace in thgl1]
Cohn-Kanade database.

. . 12
Table 1: Best average expression recognition accuracy ratL |
in Cohn-Kanade database

Subspace [13]
Method Accuracy Rate Dimensionality
SDNMF C, =2 70.36% 110
SDNMF C, =3 69.86% 160
DNMF 65.59% 190 [14]
NMF 64.86% 180

[15]

inside each class. We compared the performance of SDNMF
algorithm with NMF and DNMF and the experimental re-
sults verified the superiority of the proposed method in the
facial expression recognition task.
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