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Abstract. Two well-known variants of the self-organizing map (SOM) that are
based on order statistics are the marginal median SOM and the vector median
SOM. In the past, their efficiency was demonstrated for color image quantization.
In this paper, we employ the well-known IRIS data set and we assess their per-
formance with respect to the accuracy, the average over all neurons mean squared
error between the patterns that were assigned to a neuron and the neuron’s weight
vector, and the Rand index. All figures of merit favor the marginal median SOM
and the vector median SOM against the standard SOM. Based on the aforemen-
tioned findings, the marginal median SOM and the vector median SOM are used
to re-distribute emotional speech patterns from the Danish Emotional Speech
database that were originally classified as being neutral to four emotional states
such as hot anger, happiness, sadness, and surprise.

1 Introduction

The neural networks constitute a powerful tool in pattern recognition. They have been
an active research area for the past three decades due to their wide range of applications
[1]]. The self-organizing map (SOM) establishes a mapping from an input data space
onto a two or three dimensional lattice of nodes so that a number of topologically or-
dered and well defined neuron prototypes is produced. The nodes are organized on a
map and they compete in order to win the input patterns [2]. The SOM is among the
most popular neural networks. A number of 5384 related papers are reported in [41[5].
We are interested in the class of SOM training algorithms that employ multivariate
order statistics, such as the marginal median and the vector median [8]. These SOM
variants as well as the standard SOM, that is trained with the batch algorithm (to be
referred to as SOM hereafter), are applied to pattern clustering. The novel contribu-
tion of the paper is in the assessment of SOM training algorithms in clustering with
respect to the accuracy, the average over all neurons mean squared error, and the Rand
index. The superiority of the studied SOM variants against the SOM is demonstrated by
experiments carried out using the well-known IRIS data. We also compare the studied
SOM variants with the SOM in the re-distribution of emotional speech patterns from the
Danish Emotional Speech (DES) database [15]], that were originally classified as being
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neutral, into four emotional states such as hot anger, happiness, sadness, and surprise.
The latter experiment is motivated by the following fact. There are emotional facial
expression databases such as the Action-Unit coded Cohn-Kanade database [17]] where
the neutral emotional class is not represented adequately. Accordingly, facial expression
feature vectors are not clustered to the neutral emotional class [18]]. For the emotional
speech databases, the utterances are regularly classified as neutral. Accordingly, when
the neutral class is not represented in one modality it is difficult to develop multimodal
emotion recognition algorithms (e.g. feature fusion algorithms). Frequently, the ground
truth information related to emotions that is provided by the human evaluators is biased
towards the neutral class. Therefore, the patterns classified as neutral might be needed
to be re-distributed among the non-neutral classes to enable further experimentation.
The outline of this paper is as follows. Section[2]describes briefly the standard SOM
and the batch training algorithm, as well as the SOM variants tested, namely the mar-
ginal median SOM (MMSOM) and the vector median SOM (VMSOM). In section 3
we define mathematically the evaluation measures employed, i.e. the accuracy, the aver-
age over all neurons mean squared error, and the Rand index. This section also describes
the Kuhn-Munkres algorithm [[13] and how it is used to calculate the SOM accuracy. In
section[d] the data, we worked on, are discussed. In section[3] the experimental results
for clustering the IRIS data using the SOM, the MMSOM, and the VMSOM are demon-
strated. Furthermore, figures of merit are presented and discussed for the re-distribution
of neutral patterns into four non-neutral emotional classes using the SOM, the MM-
SOM, and the VMSOM on the DES data. Finally, conclusions are drawn in section 6l

2 Self-Organizing Map and Its Variants

2.1 Self-Organizing Map (SOM)

The SOM forms a nonlinear mapping of an arbitrary D-dimensional input space onto
a two or three dimensional lattice of nodes (the map). Each node is associated with
a weight vector w = (wy,ws,...,wp)? in the input space. The SOM is trained it-
eratively and learns the input patterns. The task of the self-organizing (unsupervised)
learning lies to revealing the statistical properties of the input patterns, creating suitable
representations for the features (i.e. weight vectors), and automatically creating new
clusters. The map neurons compete each other in order to be activated by winning the
input patterns. Only one neuron wins at each iteration and becomes the winner or the
best matching unit (BMU) [7]].

Let us denote by x; the jth D-dimensional input feature vector and by w; the ith
D-dimensional weight vector. The first step of the algorithm is the weight vector initial-
ization performed using the linear initialization algorithm. The weight vectors w; define
the Voronoi tessellation of the input space [1,[2]. Each Voronoi cell is represented by its
centroid that corresponds to the weight vector w;. Each input pattern x; is assigned to
a Voronoi cell based on the nearest neighbor condition. That is, the BMU index, c¢(j),
of the input pattern x; is defined by

e(j) = argmin{]|x; — wi[} ()
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where ||.|| denotes the Euclidean distance. Accordingly, the SOM can be treated as
a vector quantization method [6]]. The most important step of the SOM algorithm is
the adaptation of the neuron weight vectors. The neurons are connected to adjacent
neurons by a neighborhood function dictating the structure of the map (topology). It
determines how strongly the neurons are connected to each other [7]]. In each training
step, the neurons update depends on the neighborhood function, whose purpose is to
correlate the directions of the weight updates of a large number of neurons around the
BMU [20]. The larger the neighborhood, the more rigid the SOM. In our experiments,
the neighborhood function used is the Gaussian. To update the winner neurons and
their neighbors either a Least Mean Squared (LMS) type adaptation rule [1]] or a batch
algorithm can be employed. In this paper, we are interested in the latter. In the batch
training algorithm, for a fixed training set {x; }, we keep record of the weight updates,
but their adjustment is applied only after all samples of the set have been considered.
The learning stops when a pre-determined number of iterations is reached [20]. At each
training iteration, the BMU is determined. Afterwards, all the neurons that belong to
the BMU’s neighborhood are updated. The updating rule of the ith weight vector, w;,
is computed as [[7]]

S ny () hiey (1) x;
Zj'vzl hic(j) (t)
where N defines the number of patterns x; that have been assigned to the ith neuron
up to the tth iteration and h;.(; (t) denotes the neighborhood function around the BMU

¢(7). The learning rate a(t) is a decreasing function of time.

During training, the neighborhood function shrinks through time [2[7]]. At the first
training steps, large initial learning rates and neighborhood radii are used in order to
have a rigid SOM, whereas small initial learning rates and radii are used during the
following training steps. Concerning the neighborhood, as its range is decreased, so
does the number of neurons whose weight update direction is correlated. As a result of
this correlation, neighboring neurons will be specialized for similar input patterns [20].
The topological information of the map ensures that neighboring neurons on the map
possess similar attributes. It must be mentioned that, due to the neighborhood shrinking
and the decreasing learning rate through time, it is usual for a SOM to have “dead” units.
The “dead” units are neurons which subsequently fail to be associated with any of the
input vectors, and, thus, are never organized by the input data. The “dead” neurons have
zero (or very low) probability to be active [[20].

wi(t+1) = )

2.2 SOM Variants Based on Order Statistics

The standard SOM has some disadvantages, such as lack of robustness against outliers
and against erroneous choices for the winner vector due to the linear estimators [8]. In
order to face these problems, the variants of the standard SOM that employ multivariate
order statistics can be used. The MMSOM and the VMSOM treat efficiently the outliers,
because they inherit the robustness properties of the order statistics [9].

The SOM variants under discussion differentiate in the way they update the weight
vectors. The MMSOM updates the weight vectors using the marginal median, while the
VMSOM applies the vector median [8,9]. In contrast, the SOM calculates the weighted
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mean value of the input patterns, as can be seen in ). Although that the MMSOM
and the VMSOM, used in this paper, update only the BMU, while the SOM updates
also the BMU’s neighboring neurons, in principal, such update is not prohibited for
MMSOM and VMSOM as well. The MMSOM and VMSOM updating rules, discussed
here, can be seen as special cases of vector quantizers that employ a generalized centroid
condition [6].

In subsections 2.1 and 2.2] R.(t) denotes the input patterns assigned to the BMU
until the ¢th iteration and x(t) denotes the input pattern assigned to the BMU in the ¢th
iteration.

Marginal Median SOM. The MMSOM calculates the marginal median of all patterns
assigned to the winner neuron and updates only the BMU’s weight vector. The MMSOM
relies on the concept of marginal ordering. The marginal ordering of N input vectors

X1,X2,. .., XN, Where x; = (215,225, ...,2p;)! , is performed by ordering the winner
neuron’s vector components independently along each of the D dimensions [8,9]:
qu(l)Squ(Q)S"'SJJq(N), q:1327"'7D (3)

where ¢ denotes the index of the vector component into consideration. The new weight
vector of the BMU emerges from the calculation of the marginal median of all patterns
indexed by the BMU. The calculation of the marginal median is defined by [[11]

marginal median {x1,Xa,...,XN} =
N (Il(v+1)7'~'7xD(v+1))T7 N=2v+1 4
- <11<U)+2961(u+1> e, xD(U)+;D(U+1) )T7 N = 2% ( )

where NV denotes the number of patterns assigned to the BMU, w.. The winner neuron
is updated by
w(t + 1) = marginal median {R.(¢) Ux(¢)}. (5)

Vector Median SOM. The VMSOM calculates the vector median of all patterns as-
signed to the winner neuron and updates only the BMU’s weight vector. The vector
median operator is the vector that belongs to the set of input vectors indexed by the
BMU, which is the closest one to all the current input vectors. The vector median of N

input vectors X, Xa, . . ., X is defined by [10]
vector median {x1,Xa,..., XNy} =
N
= x;, where [ = arg mkin Z Ix; — xx (6)
j=1
The winner neuron is updated by
w(t + 1) = vector median { R.(¢) Ux(t)}. (7)

3 Clustering Evaluation Measures

Three measures are employed in order to assess the performance of the SOMs under
study, namely the accuracy, the average over all neurons mean squared error (AMSE),
and the Rand index.
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3.1 Accuracy

Let M be the total number of patterns that compose the test set, x; be the jth pattern,
and 6(x,y) be the delta Kronecker which equals 1 if + = y and O otherwise. The
accuracy of the assignment performed by the SOM is defined as [[12]

| M
AC = 22>~ 8(9(x;). map(9(x,))) )
j=1
where g(x;) is the true label of the pattern, ¢(x;) is the label assigned to the pattern by
the SOM, and map(v;) is the optimal matching, which maps the label assigned to the
pattern by the SOM or its variants onto the ground truth labels. The optimal matching
is needed because SOM is an unsupervised training algorithm. It can be derived by the
Kuhn-Munkres algorithm [[13].

The problem solved by the Kuhn-Munkres algorithm is stated as follows. Consider a
complete weighted bipartite graph I" = (V (JU,V x U). Let us denote V = {v;} and
U = {u;},wherei=1,2,..., K and K being the number of nodes. The weight of the
edge (v;, u;) is denoted by &(v;, u;). The goal is to find the optimal matching from V'
to U, that is the matching with the maximum sum of the edge weights that belong to
it. Mathematically, given a K x K weight matrix =, which represents the graph I, a
permutation 7w of 1,2, ..., K must be found so that the following sum

K
D iy un(i)) ©)
=1

is maximized. The resulted set of edges is the optimal matching. A graph that is not
complete, it must be forced to become complete, by adding zeros in the weight matrix
= for the non-existing edges.

Let us explain the use of the Kuhn-Munkres algorithm in the calculation of the SOM
clustering accuracy. The accuracy of the assignment performed by the SOM is defined
by (8). Let us consider that the patterns must be clustered into K clusters. That is the
number of nodes of the graph I" equals K. The weight £(v;,u;) assigned to the edge
(vi,u;) corresponds to the profit made out, if the label assigned by the SOM is v; and
the ground truth label is u;. The purpose is to maximize the profit. Obviously, if the two
labels are the same, the profit is maximized, since the SOM has assigned the patterns to
the correct ground truth class.

The input of the algorithm is a K x K weight matrix. The weights of the elements
(i,1) with ¢ = 1,2,..., K are set to be £(i,7) = 1, while the weights of the elements
(i,7)withj =1,2,..., K and i # j are set to be 0 (or a very low value). The output of
the algorithm is a K x K matrix. The (7, j) matrix element equals 1 if the edge (v;, u;)
belongs to the optimal matching, otherwise it equals 0.

3.2 Average over All Neurons Mean Squared Error (AMSE)

In order to set the definition of the AMSE, we must first define the Mean Squared Error
(MSE). The MSE of one neuron is the mean value of the Euclidean distances between
its weight vector and all the patterns assigned to it. Mathematically, the MSE of the
neuron w; is calculated as follows
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N
1 z 2
ji=

where NV is the total number of patterns assigned to the ith neuron and x;;) is the j-th
pattern assigned to this neuron. The average over all neurons MSE, which from now on
will be referred to as AMSE, is the mean value of M S E; for all the neurons of the map:

K
1
AMSE = — MSE,; 11
% ; (1)
where K is the total number of the map neurons.

3.3 Rand Index

The Rand index is a widely used evaluation measure in clustering applications. The
Rand index indicates the number of input patterns that are either from the same class
but are not grouped into the same cluster, or that are not from the same class but are
grouped into the same cluster. The Rand index is defined as follows [3} p. 173-174]:

1 N 1 Ny N. Ny
Y=g mi g =D > nh (12)
i=1 j=1 i=1 j=1

where V. denotes the total number of clusters that are created after training the SOMs,
Ny the total number of classes that the patterns are initially grouped into according to
the ground truth, n;. and n_; the total number of patterns assigned to clusters 7 and j,
respectively, and n;; the total number of patterns assigned to cluster ¢ that belong to
class j. Rand index values lie in the range 0 < y < (1; ), with (g ) denoting the number
of combinations of two patterns that can be taken out from the total set. The lower the
Rand index, the better the clustering is. A perfect clustering should produce a zero Rand
index [3]].

4 Data

The well-known IRIS data was used in order to evaluate the performance of the algo-
rithms for clustering. The IRIS data records information about 150 flower patterns [14].
Each pattern is characterized by 4 features namely the sepal length, the sepal width, the
petal length, and the petal width. The patterns are classified into 3 classes called Setosa,
Versicolor, and Virginica. The most important feature of the IRIS data is the ground
truth of the patterns, i.e. the actual class each pattern is classified to. It must be noted
that the IRIS data set does contain outliers for unsupervised learning. Accordingly, this
data set is appropriate for studying the role of the outliers in clustering. This is not the
case for supervised learning [19| p.346].

Motivated by the observations made on IRIS, we have compared the SOM vari-
ants against the SOM for the redistribution of neutral emotional speech feature vectors
from the DES database [[15] into non-neutral emotional speech patterns. We decided
to work on the DES database, because it is easily accessible and well annotated. A
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number of 1160 emotional speech patterns are extracted. Each pattern consists of a 90-
dimensional feature vector [16]. Each emotional pattern is classified into one of the five
primitive emotional states, such as hot anger, happiness, neutral, sadness, and surprise.
The ground truth for all patterns is also available.

5 Experimental Results

The performance of the SOM, the MMSOM, and the VMSOM on clustering are demon-
strated through the accuracy, the AMSE, and the Rand index on the IRIS data. The
training set consists of 120 randomly selected patterns, while the test set is composed
by the 30 remaining patterns. The accuracy, the AMSE, and the Rand index were mea-
sured using 30-fold cross validation. The accuracy should increase, while the AMSE
and the Rand index should decrease for a high quality clustering.

Table[I] summarizes the accuracy, the AMSE, and the Rand index of the three SOMs
using different number of neurons to build the map, respectively, averaged over the 30
cross validations. The best performance concerning the accuracy, the AMSE, and the
Rand index is indicated in boldface. As it can be noticed from Table [1, the MMSOM
yields the best accuracy (97.33%), the VMSOM follows (97.00%), while the SOM has
the worst behavior with respect to the accuracy (91.22%). Table 1| indicates that the
same ordering between the three SOMs stands also with respect to the AMSE. The
smallest AMSE is measured for the MMSOM (0.221). The VMSOM yields a larger
AMSE than the MMSOM (0.238) and, finally, the SOM exhibits the worst performance
with respect to the AMSE (0.441). In addition, the SOM yields the worst Rand index
for every map size compared to both the MMSOM and the VMSOM. The best Rand
index values are 33.866 for a 4 x 4 map, 13.233 for a 3 X 3 map, and 15.266 fora 3 x 3
map, for the SOM, the MMSOM, and the VMSOM, respectively.

As it can be noticed form Table[I]both the MMSOM and the VMSOM have similar
values that do not change significantly with the number of neurons, concerning all the
evaluation measures. In contrast, the SOM values change significantly with the map size

Table 1. Accuracy, AMSE, and Rand index of SOM, MMSOM, and VMSOM averaged over 30
cross validations for different map sizes on the IRIS data

Neurons ||Average accuracy Average AMSE Average Rand index

SOM [MMSOM|VMSOM|(SOM |MMSOM |VMSOM||SOM |MMSOM|VMSOM
3 (2 x 2) ||60.66(89.00 89.67 1.59910.501 0.557 76.633|51.533  [52.533
4 (2 x 2) [|82.45]90.67 88.89 1.788(0.516 0.547 98.200|49.800  |58.166
5 (3 x 2) |[90.56(97.33 95.22 1.592|0.337 0.367 56.133|22.166  |25.966
6 (3 x 2) ||91.22]96.56 95.11 1.229{0.338 0.371 45.600]23.266  |23.366
7(
8 (
9(

4 % 2) |(90.78|95.56 94.67 0.658]0.321 0.339 48.766(21.266  |23.866
4 x 2) {|82.89(96.67 94.11 1.189]0.250 0.184 78.966|17.566  |16.366
3 x 3) ||84.56|97.00 96.67 1.187{0.249 0.298 71.633|17.966  |15.266

3)(|84.56|97.11 96.33 1.175]0.266 0.337 68.533(13.233  |23.833

( 3)||88.78|96.11 94.89 0.496|0.227 0.280 46.266(19.300 |18.033
12 (4 x 3){|90.67|97.00 94.33 0.517]0.233 0.272 41.200(18.466  |22.233
(4 x 4)(|91.22|97.33 97.00 0.441|0.221 0.238 33.866(14.933  |20.100
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compared to the MMSOM and the VMSOM. This fact can be explained by the number
of “dead” neurons of each SOM. Let us denote by 1 the mean number of patterns that
a neuron wins, by o the standard deviation, and by NN the exact number of patterns a
neuron wins during training. The “dead” neurons are those for which the following in-
equality holds: N < p—o. Table[2]presents the number of “dead” neurons of each SOM
for different map sizes. It is obvious that for the SOM, the number of “dead” neurons
gets very large with increasing number of neurons, causing the significant difference
of its performance compared to the SOM variants for different map sizes. For both the
MMSOM and the VMSOM, the number of “dead” neurons is small for all map sizes,
which explains their similar behavior and the small range of values they get.

Table 2. Number of “dead” neurons for different map sizes for the SOMs

Neurons [3 [4 |5 [6 |7 [8 9 [10 Ji1 [12 [i6 |
SOM 1 [t Jt Jo 2 [3 3 3 [4 [5 |8
MMSOM[0 [0 [0 [0 [t 1 Jo Jo [2 |2 [4
VMSOM [0 [0 Jo Jo J1 Jo Jo fo [t ]2 |3

The Student ¢-test for unequal variances has been used to check whether the differ-
ence between the mean accuracies achieved by the following algorithm pairs (SOM,
MMSOM), (SOM, VMSOM), and (MMSOM, VMSOM) is statistically significant at
the 95% level of significance in a 30-fold cross validation experiment with a 4 x 4 map.
The same assessment has also been performed for the AMSE and the Rand index. The
tests have shown that the performance differences are statistically significant.

The superiority of the MMSOM was expected, because the marginal median is not
affected by the outliers in contrast to the mean. Moreover, the weight vector is not con-
strained to be among the input vectors assigned to a neuron as the vector median does.
Furthermore, the SOM contains many “dead” units and cannot represent data well. Due
to the order statistic properties of the MMSOM and VMSOM, it is expected, though,
that the maps created by the SOM variants are more representative, as demonstrated by
Table[2l The maps created by the MMSOM and the VMSOM have less “dead” units and
the classes defined on the map are well separated. However, “dead” units are inevitable
for a SOM to train a non-stationary data set [20]].

The SOMs were also applied to the re-distribution of emotional speech feature vec-
tors extracted from the DES database. The primitive emotional states are anger, happi-
ness, neutral, sadness, and surprise. Our purpose is to re-distribute the emotional speech
patterns that were originally classified as neutral into the other four emotional states.
That is, to find out which class is closer to the neutral one and how each training al-
gorithm acts on the data. The training set consists of the all the non-neutral patterns
and the test set consists of all the neutral patterns. The average assignment ratio was
estimated using 15-fold cross validation.

Table [3|demonstrates the average assignment ratio of the neutral patterns that are la-
beled as angry, happy, sad, and surprised by each SOM. As can be seen, all the algorithms
classify the neutral patterns as sad with a very high percentage. This means that sadness
resembles the neutral state more than the other emotional states. The largest percent-
age is measured for the MMSOM (61.86%), the next larger percentage is provided by
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the VMSOM (61.51%) and, finally, the SOM yields the lowest one (58.27%). It was
expected that the MMSOM would re-distribute the neutral patterns in a better manner
than VMSOM and SOM. Anger is the second closer to neutrality emotion, happiness
follows and, finally, surprise is the least similar to neutrality emotion. All the algorithms
conform to this order.

Table 3. Average ratio of neutral emotional speech patterns assigned to non-neutral emotional
classes using the SOM variants

Emotion Average assignment ratio (%)
SOM |MMSOM VMSOM
Sadness 58.27 |161.86 61.51
Anger 13.87 {14.02 15.00
Happiness 13.56 |14.81 13.62
Surprise 13.16 |9.59 9.82

The Student ¢-test for unequal variances has also found that the differences in the
average assignment ratio per emotion are statistically significant for a 15-fold cross
validation experiment.

Figure [] depicts a partition of the 2D feature domain that has been resulted after
selecting the five best emotional features by the Sequential Forward Selection algorithm
and applying Principal Component Analysis in order to reduce the dimensionality from
five dimensions (5D) to two dimensions (2D) [[16]. Only the samples which belong to
the interquartile range of the probability density function for each class are shown. It can
be seen that the neutral emotional class does not possess any overlap with the surprise,
while such an overlap is observed for sadness, anger, and happiness. Therefore, the
results shown in Table 3] comply with the sample space depicted in Figure [Tl

Samples after reduction to 2D

......................
iy

£ 2200

zzzzzz

o
P o, o
-
*» 0
I | * Anger

¢ Happiness
Neutral

Sadness
Surprise

0 ) C)
PCA 1 dimension

Fig. 1. Partition of the 2D domain into five emotional states derived by PCA. The samples which
belong to the interquartile range of each pdf are shown. The big symbols denote the mean of each
class. The ellipses denote the 60% likelihood contours for a 2-D Gauss model.

6 Conclusions

Two variants of the self organizing map, the MMSOM and the VMSOM, that are based
on order statistics, have been studied. These variants have been successfully used in
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color quantization and document organization and retrieval. In this paper, we presented
experimental evidence for their clustering quality by using the accuracy, the average over
all neurons mean squared error, and the Rand index as figures of merit. The assessment
was first conducted on the well-known IRIS data set. Motivated by the superiority of
the SOM variants that are based on order statistics, we investigated their application in
the re-distribution of emotional neutral feature vectors to non-neutral emotional states.
We demonstrated that the re-distribution is consistent with the sample feature space.
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