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Abstract— Common face detection algorithms exhaustively
search in all possible locations in the image for precisely
located, frontal faces. In this paper, a novel face detection
algorithm based on Particle Swarm Optimization (PSO) method
for searching in the image is proposed. The algorithm uses a
linear Support Vector Machine (SVM) as fast and accurate
classifier and searches for a face in four dimensions: plane,
orientation of the face, size of the face. Using PSO, the exhau-
stive search in all possible combinations of the 4D coordinates
can be avoided, saving time and decreasing the computational
complexity. Moreover, linear SVMs are proved to be a powerful
and fast classifier for demanding applications. Experimental
results under real recording conditions in the BioID and VALID
database are very promising and indicate the potential use of
the proposed approach to real applications.

I. INTRODUCTION

The goal of face detection is to find and localize faces in
images or videos [1] and return the location and extent of
each face. It is by far the most active specialization in object
detection, since it is an essential step in most face-analysis
applications, such as facial expression analysis for human
computer interfaces, face recognition for access control and
surveillance, as well as multimedia retrieval.

Face detection from a single image is a challenging task
due to the variability of the object of interest itself and the
environment: scale, location, orientation (up-right, rotated),
pose (frontal, profile), background, lighting and camera cha-
racteristics. The following problems are associated with face
detection and need to be considered:

• Size: A face detector should be able to detect faces in
different sizes. This is usually achieved by either scaling
the input image or the object model. Nevertheless, the
size of the object usually influences the reliability of the
detection since small faces are more difficult to detect
than large faces.

• Position: A face detector should be able to detect faces
at different positions within the image. This is usually
achieved by sliding a window over the image and
applying the detection step at each image position. The
choice of the step size directly influences the detection
speed and precision.

• Orientation: Faces can appear in different orientations
within the image plane depending on the angle of the
camera and the face. For 2D data, such as images,
the common rotation is the inplane rotation (roll). The
inplane rotation is a rotation along the axis which is
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perpendicular to the image plane and leads to a frontal
nonupright face. This type of rotation can be easily
handled by rotating the image and applying the frontal
face detector at different angles.

• Illumination: Varying illumination can be a big problem
for face detection since it changes the color and the
appearance of the face depending on the color, the
direction and the intensity of the light.

• Number: Most of the face detection approaches are able
to detect multiple faces within a single image, while
there are others which aim to detect one face within a
single image.

• Presence or absence of structural components [2]: Fa-
cial features such as beards, mustaches, and glasses
may or may not be present and there is a great deal
of variability among these components including shape,
color, and size.

In [2] existing face detection techniques to detect faces
from a single intensity or color image are reviewed and
classified into four major categories. These categories are:

- Knowledge-based methods: These rule-based methods
encode human knowledge of what constitutes a typical
face. Usually, the rules capture the relationships between
facial features.

- Feature invariant approaches: These algorithms aim to
find structural features that exist even when the pose,
viewpoint, or lighting conditions vary, and then use
these to locate faces. These features could be facial
features (such as eyebrows, eyes, nose, mouth, hair-
line), texture or skin color.

- Template matching methods: Several standard patterns
of a face are stored to describe the face as a whole or
the facial features separately. The correlations between
an input image and the stored patterns are computed for
detection.

- Appearance-based methods: In contrast to template
matching, the models (or templates) are learned from a
set of training images which should capture the repre-
sentative variability of facial appearance. These learned
models are then used for detection. Subcategories of this
category are: Eigenfaces, Distribution-Based Methods,
Neural Networks, Support Vector Machines, Sparce
Network of Winnows, Naive Bayes Classifier, Hidden
Markov Model, Information-Theoretical Approach and
Inductive Learning.

On the contrary to the most of the state-of-the-art face
recognition and facial expression recognition methods that

978-1-4244-8126-2/10/$26.00 ©2010 IEEE



consider that the face has been correctly and precisely located
in the image and that it is in frontal view, the faces we are
searching for do not have a particular location, orientation
or size. In the present paper we search for a face in four
dimensions (4D): plane, orientation of the face, size of the
face. While searching for a face on plane, we rotate and resize
the image for a specific range of values for the rotation and
the scaling factor. This way, we can detect faces which are
frontal, inplane rotated, small or large. The most competitive
face detection algorithms are searching exhaustively in the
test image for localizing the face. To avoid the exhaustive
search of all possible locations in the image, we propose
a face detector algorithm based on swarm intelligence and
more specifically the particle swarm optimization (PSO)
method. Each particle is equipped with a very fast and
accurate classifier and cooperates with the other particles to
give an intelligent swarm that is able to detect faces. The
presented optimization method proved that the exhaustive
search in all possible combinations of the 4D coordinates
can be avoided, saving time and decreasing the computational
complexity. Indeed, approximately only 0.4% of the possible
image positions had to be examined.

In order to check whether each image sub-window under
investigation is a face or not, we used a very fast and efficient
classifier, a linear support vector machine (SVM) that reduces
the detection to an inner vector product.

The paper is structured as follows: Section II summarizes
SVMs’ theory. Section III outlines the main idea of the PSO
method. Section IV describes the structure of the proposed
face detection system. Section V includes the experiments
executed and the corresponding results that verify the effi-
ciency of the proposed algorithm. Finally, Section VI draws
the conclusion of this work.

II. SUPPORT VECTOR MACHINES (SVMS)

In this section we briefly review the basis of the theory
of SVMs in classification problems. SVMs perform pattern
classification for two-class problems by determining the
separating hyperplane with maximum distance (margin) to
the closest points of the training classes. These points are
called support vectors.

Suppose we are given a set S of labeled training points

(y1,x1), ..., (yl,xl). (1)

Each training point xi ∈ RN belongs to either of the two
classes and is given a label yi ∈ {−1, 1} for i = 1, ..., l [3].
For the linearly separable case, suppose that all the training
data can be separated by a hyperplane that is represented by
the perpendicular vector w and the bias b such that:

yi(w
T xi + b) − 1 ≥ 0 ∀i (2)

Those training points for which the equality in Equation
(2) holds, are the support vectors and their removal would
change the solution found.

For the Lagrangian formulation of the problem, we intro-
duce positive Lagrange multipliers ai, i = 1, ..., l, one for

each of the inequality constraints (2). The rule is that for
constraints of the form ci ≥ 0, the constraint equations are
multiplied by positive Lagrange multipliers and subtracted
from the objective function, to form the Lagrangian. For
equality constraints, the Lagrange multipliers are uncon-
strained. This gives Lagrangian:

LP ≡ 1
2
‖w‖2 −

l∑
i=1

aiyi(wT xi + b) +
l∑

i=1

ai (3)

We must now minimize LP with respect to w and b, and
simultaneously require that the derivatives of LP with respect
to all the ai vanish, all subject to the constraints ai ≥ 0. We
can, also, solve the following ”dual” problem: maximize LP ,
subject to the constraints that the gradient of LP with respect
to w and b vanish, and subject also to the constraints that
ai ≥ 0. This particular dual formulation of the problem is
called the Wolfe dual [4].

Requiring that the gradient of LP with respect to w and
b vanish give the conditions:

w =
∑

i

aiyixi (4)

∑
i

aiyi = 0. (5)

For non-separable data, we can relax the constraints (2)
using positive slack variables ξi, i = 1, . . . , l [5]. The
constraints become:

yi(w
T xi + b) − 1 + ξi ≥ 0, ξi ≥ 0, ∀i (6)

A nonlinear separating hyperplane (Nonlinear SVM) can
be found if we first map the data to a higher dimension
feature space H, using a nonlinear map function Φ:

Φ : Rd �→ H (7)

Then of course the training algorithm would only depend
on the data through dot products in H, i.e. on functions of
the form Φ(xi) ·Φ(xj). Now, we can use a ”kernel function”
K such that K(xi,xj) = Φ(xi) · Φ(xj). This way, we only
need to use K in the training algorithm, and would never
need to explicitly even know what Φ is. Some examples of
kernels used in SVMs and investigated for pattern recognition
problems are the polynomial and the Gaussian rbf kernel:

(x,y) = (xT y + 1)p (8)

(x,y) = e−‖x−y‖2/2σ2
(9)

It is obvious that when we use linear SVMs, the testing
procedure requires only a multiplication of the input vector
with the one given in (4) and addition of the bias term.
However, if we use nonlinear kernels the computational cost
in the testing procedure depends on the number of support
vectors and in most cases (in our case also) is more than 103

bigger.



III. PARTICLE SWARM OPTIMIZATION (PSO)

Particle Swarm Optimization (PSO) is a population-based
stochastic optimization technique originally proposed by
James Kennedy and Russell C. Eberhart in 1995 [6]. PSO is
a search algorithm based on the simulation of the behavior
of birds within a flock.

In order to establish a common terminology, in the follow-
ing we provide some definitions of several technical terms
commonly used [7]:

• Swarm: Population of particles.
• Particle: Member (individual) of the swarm. Each par-

ticle represents a potential solution to the problem being
solved. The position of a particle is determined by the
solution it currently represents.

• pbest (personal best): Personal best position of a given
particle, so far. That is, the position of the particle that
has provided the greatest success (i.e. the maximum
value given by the classification method used).

• lbest (local best): Position of the best particle member
of the neighborhood of a given particle.

• gbest (global best): Position of the best particle of the
entire swarm.

• Leader: Particle that is used to guide another particle
towards better regions of the search space.

• Velocity (vector): This vector drives the optimization
process, that is, it determines the direction in which a
particle needs to ”fly” (move), in order to improve its
current position.

• Inertia weight: Denoted by W , the inertia weight is
employed to control the impact of the previous history
of velocities on the current velocity of a given particle.

• Learning factor: Represents the attraction that a par-
ticle has toward either its own success or that of its
neighbors. Two are the learning factors used: C1 and
C2. C1 is the cognitive learning factor and represents the
attraction that a particle has toward its own success. C2

is the social learning factor and represents the attraction
that a particle has toward the success of its neighbors.
Both, C1 and C2, are usually defined as constants.

• Neighborhood topology: Determines the set of parti-
cles that contribute to the calculation of the lbest value
of a given particle.

The position of each particle is changed according to its
own experience (pbest) and that of its neighbors (lbest and
gbest). Let zi(t) denote the position of particle pi, at time
step t. The position of pi is then changed by adding a velocity
ui(t) to the current position, i.e.:

zi(t) = zi(t − 1) + ui(t) (10)

The velocity vector reflects the socially exchanged infor-
mation and, in general, is defined in the following way:

ui(t) = Wui(t − 1) + r1C1(zpbesti
− zi(t))

+ r2C2(zleader − zi(t)) (11)

where r1, r2 ∈ [0, 1] are random values. Particles can be
connected to each other in any kind of neighborhood topo-

Fig. 1. The fully connected graph represents the fully connected
neighbohood topology (each circle represents a particle). All mem-
bers of the swarm are connected to one another.

logy represented as a graph. Our face detector uses the fully
connected graph. The fully connected topology connects all
members of the swarm to one another. Each particle uses its
history of experiences in terms of its own best solution so far
(pbest) but, in addition, the particle uses the position of the
best particle from the entire swarm (gbest) as can be seen in
Figure 1. In this case, leader = gbest in Equation 11.

The neighborhood topology is likely to affect the rate of
convergence as it determines how much time it takes to
the particles to find out about the location of good (better)
regions of the search space. Since, in the fully connected
topology all particles are connected to each other, all particles
receive the information of the best solution at the same time
and, thus, the swarm tends to converge more rapidly than
when using other topologies. However, the fully connected
topology is also more susceptible to suffer premature con-
vergence (i.e. to converge to local optima) [8].

Algorithm 1 PSO
Initialize swarm (positions and velocities)
Locate leader
g = 0
while g < gmax do

for each particle do
Update Position (Flight)
Evaluation
Update pbest

end for
Update leader
g++

end while

Algorithm 1 shows, in pseudocode form, the way the
general PSO algorithm works. First, the swarm is initialized,
both positions and velocities. The corresponding pbest of
each particle is initialized and the leader is located (the gbest
solution is selected as the leader). Then, for a maximum
number of iterations, each particle flies through the search
space updating its position (using Equations 10 and 11) and
its pbest and, finally, the leader is updated too.



IV. COMBINING PSO AND SVMS FOR FACE DETECTION

In this section the final face detection system is described.
This discussion includes details on training the classifier
used, preprocessing images and the structure of the system.

A. Training SVM

We trained and compared SVMs using linear and polyno-
mial kernels. The comparison between them shows that, in
our case, the computational complexity for nonlinear SVMs
is 1000 times more intensive than linear SVMs. The linear
SVMs give a slightly lower success rate (≈ 1%) but they are
much faster. Nonlinear SVMs are more intensive because we
have to compute inner products for all the support vectors
which in our case are above 1000. The training data for
the linear SVM we used consisted of 2901 grayscale face
images and 28121 grayscale non-face images of size 19×19.
The face images presented a great variability of structural
components, such as beards and glasses. These images, are
taken from the CBCL Face Database, which is available
at http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
After fine-tuning the training parameters using cross-
validation we trained the SVMs to the whole training and test
set of the CBCL database and the success training rate for
this classifier was found to be 98.74%. This trained classifier
has been used for all the experiments performed in the test
databases as explained in Section V. No image from the test
database has been used for training.

B. Image Preprocessing

In order to eliminate or minimize the effect of different
lighting conditions, images used for training SVMs were hi-
stogram equalized and normalized so that all pixel values are
between 0 and 1. Normalization and histogram equalization
are therefore necessary during detection as well. Histogram
equalization enhances the contrast of images by transforming
the values in an intensity image, so that the histogram of the
output image approximately matches a uniform histogram.
Each image sub-window under investigation is processed
using the above methods. Histogram equalization is a compu-
tationally intensive process and thus avoiding the exhaustive
search with the use of PSO is of outmost importance for real
time detection.

C. Structure of the Face Detector

Algorithm 2 describes the face detection process using a
linear SVM as classifier and the PSO method to decrease
computation time. The general idea as described previously
is that each particle has its own intelligence using the SVM
classifier in order to evaluate the current position on whether
it contains a face or not. The particles communicate and
inform one another for the most possible face position at
each iteration.

First, we initialize the parameters inertia, correction fac-
tor, maxVelocity and minVelocity, used to update velocity,
for each dimension x, y, z (rotation factor) and w (scaling
factor). After loading the trained linear SVM and reading the
input image (the one in which we are looking for a face),

Algorithm 2 Face Detector using PSO and SVM
Initialize parameters for each dimension: inertia, correc-
tion factor, maxVelocity, minVelocity
Load trained linear SVM and Read input image
Initialize particles to random positions (x, y, z, w)
iteration = 0, repeat = 0
while repeat < R do

for each particle do
Update position
Resize image using scaling factor w
Rotate image using rotation factor z
Compute (x′, y′) for transformed image
Process this square of image with histogram equali-
zation
Evaluate SVM’s result for this position
Update pbest

end for
Update gbest’s index
Update velocities for each particle
iteration + +
if gbest′s position has not changed and iteration > K
then

repeat + +
end if

end while
gbest′s position = left upper corner of detected face

we perform any necessary transformations. We initialize par-
ticles to random positions (x, y, z, w) using predetermined
limits and random values.

Secondly, the position of each particle is updated using
Equation 10. The initial image is resized by scaling factor
w and rotated by rotation factor z. The point (x, y) is
transformed meeting the above transformation of the image.
This is the left upper corner of a 19×19 sub-window which
is histogram equalized and used to compute the output of
the linear SVM. The bigger the latter output is, the more
possible this sub-window corresponds to a face. Pbest is
updated using its history of experiences in terms of its own
best solution (SVM output) so far.

In succession, gbest is computed from pbest values. The
velocity of each particle is updated using Equation 11.

After K iterations we inspect whether the particles con-
verge or not. If for R + 1 successive iterations gbest is at
the same position, we assume that this location probably
contains a face. We check whether the value of SVM at
this point is above a predetermined threshold. If the value
of gbest is larger than this threshold, we terminate the
detection procedure. If gbest’s value is below the threshold
we initialize the particles again at random positions and we
repeat the above procedure.

D. Step size for each dimension

The choice of the step size for each dimension directly
influences the detection speed and precision. In order to



estimate algorithm’s robustness for each dimension we did
some tests. We came up with the following results:

• x: minimum velocity = −5 pixels and maximum velo-
city = 5 pixels

• y: minimum velocity = −5 pixels and maximum velo-
city = 5 pixels

• z: minimum velocity = −10◦ and maximum velocity
= 10◦

• w: minimum velocity = 10% under the scaling factor
and maximum velocity = 10% above the scaling factor

V. EXPERIMENTAL RESULTS

A. Frame Detection Accuracy (FDA)

Frame Detection Accuracy (FDA) is an evaluation metric
used to measure any object detection algorithm’s perfor-
mance. This measure calculates the spatial overlap between
the ground-truth and the algorithm’s output. The detection
accuracy is estimated as the ratio of the spatial intersection
between the ground-truth and the detected object and the
spatial union of them [9]. If the face detection algorithm
aims to detect multiple faces, the sum of all the overlaps
is normalized over the average number of ground-truth and
detected objects. If NG is the number of ground-truth objects
and ND the number of detected objects, FDA is defined as:

FDA =
Overlap Ratio[

NG+ND

2

] (12)

where

Overlap Ratio =
Nmapped∑

i=1

∣∣Gi ∩ Di

∣∣∣∣Gi ∪ Di

∣∣ , (13)

Nmapped is the number of mapped object pairs in the image,
Gi is the i-th ground-truth object image region and Di is the
i-th detected object image region.

B. Speed Performance of the Face Detector

The speed performance of the presented face detector is
directly related to various parameters, such as the swarm
size, the image’s initial size and the repeat cycles. The
average number of positions examined using PSO was a
very small percentage of all the possible combinations of
the 4D coordinates ranging from 0.2 to 0.6%. The latter
demonstrates the significant reduction in the number of
possible solutions to which we have to apply the classifier
each time. That is, using PSO for searching we are able to
reduce the time needed for a detection by a factor of 200 and
greater for any given face detection algorithm. Furthermore,
using linear SVM instead of nonlinear gives another 103

boost in the detection speed.

C. BioID Face Database results

In this section, we present the experimental results for the
BioID Face Database. We applied the proposed algorithm to
the above database consisted of 1521 gray level images with
an initial resolution of 384× 286 pixels. Each image record
shows the frontal view of a face of one out of 23 different test

Fig. 2. Output of the proposed face detector on a number of frontal
test images from the BioID Database.

persons in real indoor environments. Ground-truth for the ex-
act location of the eyes in each image is given by the authors
of the database and has been used in order to define a ground-
truth bounding box around the face. The bounding-box has
been defined to coincide with the images used for training.
Emphasis has been placed on real world conditions and,
therefore, the testset features a large variety of illumination,
background and face size. The BioID Database is available
at http://www.bioid.com/support/downloads/software/bioid-
face-database.html.

Figure 2 shows the output of the proposed face detector
on some frontal images from the BioID Face Database
along with the overlap and the detector’s output value.
Black rectangles represent the ground-truths of every image,
while green (lighter gray) windows represent the proposed
algorithm’s output.

TABLE I

DETECTION RATES FOR THE PRESENTED ALGORITHM (SVM-PSO) IN

COMPARISON WITH VIOLA-JONES’ ALGORITHM (OPENCV) FOR THE

BIOID FACE DATABASE.

Detector 0.19, 0◦ 0.25, 0◦ 0.30, 0◦ 0.3, 20◦
SVM-PSO 93.95% 93.62% 94.08% 88.36%
OpenCV 0% 83.50% 94.48% 37.67%

Table I lists the detection rate for the presented algorithm
in comparison with Viola-Jones’ state-of-the-art algorithm
[10] using as threshold for overlap the value 25.00. In
order to have a fair comparison we optimized the output
of the competitive algorithm to match as much as possible
with the ground-truth. For initial scaling factor 0.19 and
rotation factor 0◦, images are too small for the Viola-Jones
algorithm to be detected while our algorithm gives a very
good detection rate. So, we apply the algorithms to larger
images (scaling factor 0.25 and 0.3), while the rotation
factor remains the same, and the detection rates for our
algorithm remain very good. The Viola-Jones algorithm gives
for scaling factor 0.25 a relatively good detection rate but



lower to our algorithm’s, whilst for scaling factor 0.3 it gives
a detection rate similar to our’s.

In order to investigate the performance of our algorithm
for rotated images, we apply both algorithms on 20◦ rotated
images from the available BioID Face Database. We have
used rotated versions of the BioID images using prespecified
rotation degrees in order to simulate a rotated version of a
face that can be found in a challenging real image. So, for
initial scaling factor 0.3 and rotation factor 20◦ the detection
rate for our algorithm is satisfying good, while Viola-Jones’
algorithm gives a very low detection rate.

Figure 3 shows the output of our face detector on some
rotated images from the BioID Face Database along with
the overlap and the detector’s output value. As above, black
rectangles represent the ground-truths of every image, while
green (lighter gray) windows represent the proposed algo-
rithm’s output.

Fig. 3. Output of our face detector on a number of 20◦ rotated
images from the BioID Database.

We can, also, mention that the classifier used in Viola-
Jones’ algorithm is trained using much more training images
than our classifier and it is well known that the number
of training samples has a direct effect on the classification
performance. Unfortunately, we have not had access to a
larger dataset in order to train better the proposed classifier.
This shows that if we had used a larger training dataset, we
would have probably had much better detection rates for our
algorithm.

D. VALID Database results

We, also, applied both algorithms to the VALID
Database, available at http://ee.ucd.ie/validdb/datasets.html.
This database consists of still images of one face with
576 × 720 initial size, divided in three sets of 530 images.
The initial scaling factor we used is 0.21, while the overlap
threshold was the same as above.

Table II lists the detection rates of the proposed algorithm
in comparison with Viola-Jones’ algorithm detection rates for
the VALID Database. It is obvious that SVM-PSO algorithm

Fig. 4. Output of our detector on a number of test images from the
VALID Database.

TABLE II

DETECTION RATES FOR THE PRESENTED ALGORITHM (SVM-PSO) IN

COMPARISON WITH VIOLA-JONES’ ALGORITHM (OPENCV) FOR THE

THREE DATASETS OF THE VALID DATABASE.

Detector dataset1-0 datset1-10 dataset1-50
SVM-PSO 87.55% 88.49% 87.74%
OpenCV 46.98% 43.96% 46.42%

is far superior to OpenCV, because the detection rates for
our algorithm are satisfying good for each dataset, whilst
Viola-Jones algorithm’s detection rates are very low.

Figure 4 shows some outputs for the proposed algorithm
on images of that database. Black rectangles represent the
ground-truths of every image, while green (lighter gray)
windows represent the proposed algorithm’s output.

VI. CONCLUSIONS

In this paper we have dealt with the problem of face
detection in still images for frontal, rotated, large or small
faces. We presented a fast and accurate face detection
system that features a face detection, scaling and rotation-
aware algorithm. To avoid exhaustive search in all possible
combinations of coordinates in 4D space, we used the PSO
method, while to save time and decrease the computational
complexity we used as classifier a linear SVM. Experimental
results demonstrated the algorithm’s good performance in a
dataset with frontal and rotated images recorded under real
world conditions and proved its efficiency, especially in cases
of rotated faces or faces of various sizes (very small or
larger). A very important feature is the algorithm’s ability
to return an estimation of the face’s rotation and scaling
factor in addition to its location. A lot of attention has been
drawn to this issue because it can be very useful in a variety
of applications, especially when face detection is used as
a preliminary step for future analysis in applications such
as facial expression analysis for human computer interfaces,
face recognition and multimedia retrieval. The proposed



method can be combined with any face detector, e.g., the
one used in OpenCV, to reduce their execution time.
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