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ABSTRACT

This paper presents a novel approach for estimating ��� head
pose in single-view video sequences. Following initialization
by a face detector, a tracking technique that utilizes a ��� de-
formable surface model to approximate the image intensity is
used to track the face in the video sequence. Head pose estima-
tion is performed by using a feature vector which is a by-product
of the equations that govern the deformation of the surface model
used in the tracking. The afore-mentioned vector is used for
training Support Vector Machines (SVM) in order to estimate
the ��� head pose. The proposed method was applied to IDIAP
head pose estimation database. The obtained results show that
the proposed method can achieve an accuracy of ����� if angles
are estimated in 	�

� increments and �
��� if angles are estimated
in ��� increments.

1. INTRODUCTION

Head pose estimation in video sequences is a frequently encoun-
tered task in many applications including intelligent surveillance
and human-computer interaction, or as a preprocessing step in
face detection, facial recognition and facial expression analysis,
since face detection and recognition are very sensitive to even
minor head rotations. Estimating head pose from a single camera
is far from being a simple process due to image clutter, partial
occlusions, unconstrained motion, varying lighting conditions,
etc. A comparison of existing head pose estimation algorithms
is given in [1, 2].

The single-view ��� head pose estimation approach proposed
in this paper was motivated by the technique presented in [3] and
[4], which aims at analyzing non-rigid object motion, with ap-
plication to medical images. Based on a similar principle, we
assume that the image intensity of a video frame forms a surface
in ��� that can be approximated by a deformable surface. Then,
we use the generalized displacement vector which is the result of
an intermediate step of the deformation process, for both track-
ing the head and estimating its ��� pose in video sequences.

The tracking procedure is based on measuring and matching
from frame to frame the generalized displacement vector of a de-
formable model placed on the face. The results indicate that this
approach can offer reliable and robust tracking of the face. The
generalized displacement vector is also used to train three SVM
into estimating the pan, tilt and roll angles of the head. Angles
are estimated in 	�
 � and � � increments. The proposed algorithm
was tested on the IDIAP head pose database [2] which consists
of different video sequences in natural environments with large
rotations of the face. The database includes head pose ground
truth information. The results show that the proposed algorithm
can achieve an accuracy of ����� .

The remainder of the paper is organized as follows. The ���
physics-based deformable surface model is described in Section

Fig. 1. The elastic ��� physics-based deformable model consist-
ing of ��������� nodes.

2. Section 3 introduces the tracking algorithm and explains the
derivation of the feature vector used for pose estimation. In Sec-
tion 4 Support Vector Machines are reviewed and their use for
pose estimation is explained. Performance evaluation of the pro-
posed algorithm is provided in Section 5. Conclusions are drawn
in Section 6.

2. 3D PHYSICS-BASED DEFORMABLE SURFACE
MODELING

Let �������! #" denote the intensity (grayscale value) of the pixel
at position �����$ #" on an image. By combining both the spatial�����$ #" and grayscale �������! #" components of an image one can
obtain a ��� surface representation ( ���! ��$�������! #" ) of the image
[5]. An elastic ��� physics-based deformable model [3] (Figure
1) consisting of a mesh of connected springs comprising of �&%���'��� nodes (assumed to be equal to the height and width of
the image region of interest), can be used to approximate this
surface through the application of forces that attract it towards
the surface.

Nastar et al. [3] used deformable models to approximate the
dynamic object surface deformations in time sequences of vol-
ume data. Modal analysis, which is a standard engineering tech-
nique was exploited to solve the deformation governing equa-
tions. In this paper, the deformable model formulation is used in
a totally different application, i.e. that of face tracking and pose
estimation.

The deformable model is used to approximate the intensity
surface of the tracked face. In this case, the initial and the final



(desirable) deformable surface states, i.e. the initial model con-
figuration and the image intensity surface, are known and it can
be assumed that a constant force load ( is applied to the surface
model. Thus, the equilibrium governing equation of the defor-
mation procedure corresponds to the static problem:)�* %+(�� (1)

where
)

is the stiffness matrix,
* %&, u

¯ - �/././.0� u¯ 132 4 is defined
as the vector comprising of the vectors of nodal displacements,
and (5%6, f

¯ - �/././.0� f¯ 1 2 4 is the external force vector compris-
ing of the external forces vectors applied to each node. The
forces in this vector have zero � and  components whereas
their 7 component is taken to be equal to the Euclidean dis-
tance between the point �����$ ��!�������! #" ) of the intensity surface
and the corresponding node of the model in its initial configura-
tion �����! ��8
�" , i.e. equal to the intensity �������! #" of pixel �����! #" :9�: �����! #"�% 9�; <�= -?>@10ACBED
F : %G�������! #" , where

9�; <�= -?>@10ACBED
F : is
the 7 component of the ����HI	�"!����JK -th element of vector ( .

Instead of solving directly the above equation for
*

one can
use modal analysis and pursue a solution in the so-called modal
space. Equation (1) is transformed in the modal space as follows:L)ML* % L('� (2)

where
L) %5N 4 ) N , N is the matrix with the so-called vibration

modes,
L(�%ON 4 ( and

L*
is the generalized displacement vector

of the deformation process.
A significant advantage of the modal analysis described in

[6], is that the vibration modes (eigenvectors) PRQ , i.e. the columns
of N and the frequencies (eigenvalues) STQ of a plane topology do
not have to be computed using eigen-decomposition techniques
but have an explicit formulation [3]:SRU
� V��?V�W�"X%YSRU; Z�= -?>@10ACB Z\[ %%^] k¯_ `ba$c d U `fe V�
���hg J a$c d U `Ke V W�
���igjg � (3)

where VlkKm�
n��	���././.0�8����H+	
o , V W kIm�
n��	��/././.0�8���pH+	
o , k
¯

is
the stiffness of the springs, _ is the mass of the nodes,Pq� V��?V�W�"X%rP ; Z�= -?>@10ACB Z\[ %s, .�./.0�t/u a3e V#�v��wlHx	�"��� t/u aye V W �v��w W Hx	�"��� �/././. 2 4 � (4)

where wpkzm�	��{�'��././.0�8���bo and w W kpm�	��{�'�/.�./.0�8���To .
We consider that no deformations occur along the � and  

axes, i.e., deformations occur only along the intensity 7 axis,
driven by the intensity (grayscale value) of the image under ex-
amination. Thus, for each component , L| <�} � L| D } � L| : } 2 of vector ~*
in (2), we have

L| <�} % L| D } %�
 and ~* is simplified to:~* %s, L| - ��././.0� L| 1���10A 2 4 � (5)

where
L| QC� L| : } .

In the new basis, equation (1) is simplified to the following
scalar equations: S UQ L| QC% L9 Q$���h%�	��/.�./.0�8�l� (6)

where
L9 Q is the 7 component of the � -th elements

L( .
Thus, instead of computing the displacements vector

*
from

(1), one can firstly compute
L*

in terms of (6), the frequencies (3)
and the vibration modes (4) of the surface model. Once

L*
has

been computed,
*

can be calculated from the following equation:* %5N L* . (7)

In order to reduce the complexity of the problem, one can
approximate nodal displacements by using only � Wi� ���'���
of the vibration modes P3Q (those correspond to low frequency),
or equivalently � W of the

L| Q . A value of � W which results in a
compact but adequately accurate surface representation, is equal
to ����� of the total number of the

L| Q .

3. FACE TRACKING AND DERIVATION OF THE POSE
FEATURE VECTOR

Prior to the proposed tracking algorithm, a real-time frontal face
detection algorithm [7] is applied to the first image of the video
sequence. The face detection scheme is based on simple fea-
tures that are reminiscent of Haar basis functions [8]. These fea-
tures were extended in [7] to further reduce the number of false
alarms. The output of the detection procedure is the center �����! #"
(in pixels) of the face which usually corresponds to a point close
to the nose.

Subsequently, a tracking approach similar to the one pro-
posed in [6] is used to track the face center ���T%������$ #" . This is
done by applying the deformable model described in the previ-
ous section on a small window (e.g. one of dimensions �

����


pixels) around this point and evaluating the generalized displace-
ment vector

L* � of equation (2) for this model:~* � �����$ #"�%s, L| � - �����! #"\� L| � U �����! #"\�/././.0� L| � 1��31C� �����$ #" 2 4 � (8)

where ��� and ��� are the height and width of the deformable
surface model (equal to the dimensions of the window). We will
call vector ~* �\�����$ #" the characteristic feature vector (CFV).

In order to find the position �h� BC- %���� W �$ W " of the face
center in the next frame � � BC- , the algorithm computes the CFV~* � BC- �����8��" for each pixel of a search region � with height ���y�8�?�
and width �����8�?� , centered at coordinates �����$ #" in image � � BC- .The new location of the face center is found as the location��� W �$ W " of the search region in the next frame whose CFV is
closer to that of �h� in the current frame. More specifically:� � BC- %s����W��$ nW@"yH������8�y� c d {¡ �8¢ £ �< F D HK£ � BC-  F ¡ ¢ "\� (9)

where ��k¤m��¥H 1���¦$§?¨ = -U �©././.0�R���q././.0�3��J 1���¦$§?¨ = -U o and�hkpm� �H 1C�©¦$§?¨ = -U �j.�./.0�T ��j././.0�T iJ 1C�©¦$§?¨ = -U o and £h�< F D is
given by:

£ �< F D % 1��31C�ª Q « -­¬¬
L| �Q �����! #" ¬¬ . (10)

Since the motion characteristics of the face to be tracked
might change over time, i.e. the face can speed up or slow
down at certain frames, the algorithm uses a a search region R
of variable size. For each frame the algorithm tries to locate
the new center of the face using initially a small search region
(e.g 7x7). However, if for the best candidate position the error¢ £h�< F D HI£ � BC-  F ¡ ¢ in (9) is above a certain threshold, the algorithm
increases the search region size, trying to find a better match (a
match corresponding to a matching error below the threshold)
in the larger search area. If this is again not feasible, the size
increase continues up to a certain maximum region size.

In addition to its use for tracking, the CFV of the face center
is used for deriving the head pose. The CFV contains informa-
tion about the region around the center of the face, i.e. around
the nose, since its elements are related to the displacements of
the deformable surface model which approximates the intensity
surface in this area. As the face/head changes orientation in the��� space, its projection on the image ( �
� space) changes. Thus,
the fixed-size region centered at the nose includes the part of the
face around the nose in different perspective views (Figure 2).
Hence, this information can be used to derive the orientation of
the face. The characteristics of the deformable surface model
used in the experimental setup, were set so that the model was a
rigid one. Thus, the final state of the deformable surface was a
smoothed version of the face intensity surface, in order to be in-
sensitive to clutter, dissimilarities of the faces between different
persons and varying lighting conditions. By utilizing the trun-
cated space of the modal analysis, one can reduce the size of the



Fig. 2. Different orientations of a face along with the region used
for the evaluation of the CFV.

CFV to ����� of its original size, without losing significant infor-
mation. The information contained in the CFV was used along
with appropriately trained SVM to derive pose information as
will be described in the next section.

4. POSE ESTIMATION USING SUPPORT VECTOR
MACHINES

Multiclass Support Vector Machines [9] (a generalization of the
binary SVM) were used to classify the CFV ~* � of frame �n� to
one of the possible angle intervals for the three pose angles (pan,
tilt, roll). More specifically, three SVM systems, each handling
a different angle (pan, tilt, roll) of the face pose, were used. The
value range of each of these parameters ( , H¯®�
R././.8®�
 2 for pan,, H¯°�
R././.8°�
 2 for tilt and , H¯��
R././.8��
 2 for roll) was split into ±²km
±�³/´�µE�\± � Q ¡ � �\± � � ¡ ¡ o intervals and each of the three ± -class
SVM systems was used to assign ~* � to one of the corresponding± classes.

The main idea behind SVM is to construct hyperplanes that
will separate the desired classes, in such a way that the margin
(defined as the distance between the hyperplane and the nearest
observation) is maximal. While training the SVM system, a set
of CFVs ~* � is used as an input, labelled properly with the true
corresponding pose angles. To perform testing, an unlabelled
feature vector ~* � [ is used as an input. The trained SVM system
handling a certain pose angle, provides a label that classifies ~* � [
to one of the ± possible intervals for this angle.

Through training the SVM creates a decision function
9 �\~* �!"

which classifies a vector ~* � into one of the ± angle intervals, i.e.
it provides a class label � Z kpm�	�./.�.\±�o . To do so, the following
equation should be minimized in the ± class case:¶ � w �!·'"�%�	�¸��º¹ª» « - � w » 4�¼ w » "0JI½ ¼ 1ª Q « - ª»i¾« ¡ } · »Q (11)

with constraints� w ¡ } 4�¼ ~* Qv"0JK¿ ¡ }3À � w » 4�¼ ~* Q?"EJK¿ » Jx�¯Hp· »Q (12)

· »Q À 
n�­�Tkzm�	���.�././�8�zo _ kpm�	���. . . �{±�o
Á
� Q$� (13)

where � is the number of the input vectors, w is the vector of
hyperplane coefficients, ÂK%Ã, · - �/./././�!· 1 2 is the slack variable
vector, Äº%Å, ¿ - �/.�././�$¿ ¹ 2 is the bias vector and ½ is the term
that penalizes the training errors. The decision function derived
from the minimization of (11) is of the general form:9 �\~* � "�% arg �¥��Æµ , � w µ 4�¼ ~* � "EJK¿/µ 2 �­wzkpm�	���././.\±�o (14)

The solution to this optimization problem in dual variables can
be found by the saddle point of the LagrangianÇ � w �$Äy�8Â��8È��?É¯"�%�	�¸��º¹ª» « - � w » 4�¼ w » "0JI½ 1ª Q « - ¹ª» « - · »QH 1ª Q « - ¹ª» « -�Ê »Q , �$� w Q0H w » " 4 ¼ ~* Qv"0JK¿ ¡ } Hp¿ » HK�RJ¤· »Q 2

H 1ª Q « - ¹ª» « -�Ë »Q · »Q (15)

with the variables

Ê ¡
}Q %�
n��· ¡ }Q %f�'� Ë ¡

}Q %�
n�­�h%5m�	���././.0�8�zo (16)

and constraints

Ê »Q À 
n� Ë »Q %�
n��· »Q À 
n� (17)�Tkpm�	��/.�././�8�zo _ kzm�	���. . . �{±�o
Á
� Q
which has to be maximized with respect to È and É (being the
vectors of Lagragian multipliers) and be minimized with respect
to w and Â .

By further processing [10] equation (14) is finally expressed
as: 9 �\~* � "�% arg �¥��Æµ , ªQ�Ì ¡ } «Eµ�Í Q$�\~* 4Q ¼ ~* � " (18)

H ªQ�Ì ¡ } ¾«Eµ Ê µQ �\~* 4Q ¼ ~* � "0JK¿/µ 2
where Í Q is defined as

Í Q�%�¹ª» « - Ê »Q . (19)

The previous analysis is used for linear decision surfaces.
For the proposed method, nonlinear SVM were considered, i.e.
a nonlinear mapping Îi�\~* �!" to a high dimensional space was
used. This mapping is defined by a positive kernel function,�E�$�\~* �!" 4 �
~* �!" , specifying an inner product in the feature spaceÎi�$�\~* � " 4 " ¼ Îi�\~* � "�%��E�$�\~* � " 4 ��~* � "\. (20)

The kernel used for the experiments was a Ï degree polyno-
mial function, defined in general as�E�$�\~* � " 4 ��~* � "T%s�$�\~* � " 4�¼ ~* � JM	�"?Ðn. (21)

In order to increase the performance of the head pose esti-
mation system, a different variant where the input vectors of the
SVMs consisted of a concatenation of the CFV ~* � with the pose
angles of the previous frame was also devised. More specifically,
the SVMs were fed at time instant Ñ with vectors of the form:, ~* � ¢ Ò � = - 2 4 (22)

where Ò � = - denotes the pan, tilt or roll angle in the previous
frame. During training the ground truth pose angles were used
whereas during testing, the estimates from the application of the
system in the previous frame were inserted. This scheme can still
be applied on-line, since for each frame only the angle estimates
for the previous frame are necessary during testing.
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Fig. 3. Tracking results for � different video sequences.

5. EXPERIMENTAL RESULTS

The proposed method has been used to estimate the ��� head
pose on parts of the IDIAP video database [2]. The database
comprises of �
� video sequences involving people engaged in
natural activities. In total, 	�° different subjects participate in the
video database. The database contains head pose ground truth in
the form of pan, tilt and roll angles (i.e. Euler angles with respect
to the camera coordinate system) for each frame of the video se-
quences. In all the experiments only ����� of the coefficients of
the CFV were used for training and testing the SVM. The param-
eters of the deformable surface model were defined so as to give
a smooth representation of the face intensity surface, i.e. a ratio
k
¯» %º	�
 (k

¯
being the stiffness of the springs and _ the mass of

the nodes) was used. Half of the video sequences were used for
training the SVM and the rest for testing the system. The value
ranges of the three pose angles were split into intervals of length��� and thus the pose angles were estimated in increments of �
� .
The accuracy of the system was measured as the percentage of
frames where the ground truth pose angles were inside the same��� intervals as the estimated pose angles.

In the first set of experiments, the tracking algorithm was
applied to the video sequences (see Figure 3) and the acquired
CFVs were fed to the SVM. The results, in that case were not
very satisfying. An average accuracy of �
®�� was achieved in
this set of experiments. This is because video sequences were
obtained in natural environment and the movements of the face
are fast and sudden. Thus, tracking and subsequently pose esti-
mation fail in certain cases.

In the next set of experiments, the above procedure was re-
peated, but this time, the variant where the pose angles for the
previous frame were appended to the current CFV was used.
The head pose estimation accuracy was significantly increased
to �
��� .

In the last set of experiments, the previous procedures were
repeated but this time the pose angles were estimated in incre-
ments of 	�

� . The average accuracy when SVM were fed only
with CFVs was ° ] � . However, when the estimation of the pose
angle in the previous frame was included in the input vector, the
average accuracy of the proposed system was increased to ����� .

6. CONCLUSION

A novel ��� head pose estimation algorithm for single-view video
sequences that utilizes a combination of ��� deformable surface
models that approximate the image intensity surface, with SVM
is introduced in this paper. An intermediate step of the deforma-
tion procedure, the so-called generalized displacement vector, is
used for both tracking and pose estimation through appropriately
trained SVM. The obtained results indicate that the introduced
algorithm achieves an accuracy of ����� or �
��� if angles are es-
timated in 	�

� and ��� increments respectively. Improvements
of the method by using a two-pass approach are currently under
investigation.
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