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ABSTRACT

The efficiency of three tracking reliability metrics based on infor-
mation theory and normalized correlation is examined in this pa-
per. The two information theory tools used for the metrics con-
struction are the mutual information and the Kullback-Leibler dis-
tance. The metrics are applicable to any feature-based tracking
scheme. In the context of this work they are applied for compari-
son purposes on an object tracking scheme using multiple feature
point correspondences. Experimental results have shown that the
information theory based metrics perform better than the normal-
ized correlation one.

1. INTRODUCTION

Measuring the performance of a tracking algorithm is considered
an open issue in the tracking research community. Most of the
tracking techniques use subjective evaluation methods, while some
of them use quantitative evaluations based on ground truth data
[1]. The implementation of reliability measures not resorting to
ground truth data is particularly important. Several metrics for per-
formance evaluation of tracking algorithms without ground truth,
based on color and motion were introduced in [2]. A more recent
work on those metrics incorporates them in a tracking scheme in
order to perform better tracking [3]. A performance measure based
on SSD (Sum of squared differences) was introduced in [4], nev-
ertheless it is used as a single feature point tracking performance
measure, and is not directly applicable in object tracking. The use
of SSD in object tracking can be found in the early works of [5, 6].

Measuring tracker performance is important in cases of rapid
performance degradation such as partial or total occlusion. Dif-
ferent algorithms for handling occlusions were presented. How-
ever, quantitative measures of the tracker performance not based
on ground truth data are not generally proposed.

Evaluation of the efficiency and experimental comparison of
three tracker reliability metrics, applicable to feature-based track-
ing schemes, is performed in this paper. The first metric is based
on mutual information and is presented in detail in [7]. In this pa-
per, the implementation of the metric is based on 15�15 windows
rather than on single-pixel feature points in order to be more close
to existing tracking algorithms. The second metric is novel and is

The work presented was developed within VISNET, a European Net-
work of Excellence (http://www.visnet-noe.org), funded under the Euro-
pean Commission IST FP6 programme.

based on the Kullback-Leibler distance [8]. Kullback-Leibler dis-
tance was previously used in face detection [9], in sound process-
ing [10] and in video indexing and retrieval, while a fast approxi-
mation of Kullback-Leibler distance between two dependence tree
models is presented in [11]. Although the Kullback-Leibler dis-
tance is similar to the mutual information its asymmetry [10] makes
the comparison of the two metrics important. The third metric is
based on normalized correlation [12], properly adjusted to partic-
ularities of object tracking.

The tracking evaluation metrics are applied for comparison
purposes on the same feature based tracking scheme presented in
[13]. The scheme performs object tracking by minimizing the sum
of squared differences of a large set of feature points generated
in the tracking region. The algorithm presented in [6] is used for
feature point tracking. Kalman filtering motion prediction is em-
ployed to estimate the tracked region position during occlusion.
Robustness to partial occlusion is achieved by estimating the mo-
tion of the lost feature points, using the estimated motion of the
bounding box [13].

The main contributions of present work are the introduction of
the new reliability metric based on the Kullback-Leibler distance
and the comparison of the mutual information based metric [7],
the Kullback-Leibler based metric and the normalized correlation
based metric in a unified way.

2. MUTUAL INFORMATION METRIC

Let xri;j and xci;j represent the coordinate vectors of the ith pixel
belonging to the 15 � 15 feature point window j in the reference
and current frame, respectively. During the tracking process, a
pixel set

S1 = [xr1;1; : : : ;x
r
W;1 : : : ;x

r
W;M1

]T (1)

is tracked to a pixel set

S2 = [xc1;1; : : : ;x
r
W;1 : : : ;x

c
W;M2

]T : (2)

where W = 152 and M1, M2 are the number of feature points at
the reference and current frame. Let NT be the maximum number
of feature points, which is considered constant during the tracking
procedure. Obviously, M1 � NT , M2 � NT . Let also U; V
be two random variables expressing grayscale values in the refer-
ence and target image with p(u); p(v) their marginal probability
mass functions and ui = Jr(x

r
k;l); vj = Jc(x

c
k;l) their possible

outcomes, where Jr and Jc are the reference and current image



respectively and xrk;l 2 S1 ;x
c
k;l 2 S2 . The mutual information of

two random variables U; V with a joint probability mass function
p(u; v) is defined as [14]:

I(U;V ) =

NmaxX
i=1

NmaxX
j=1

p(ui; vj) log2
p(ui; vj)

p(ui)p(vj)
; (3)

where Nmax is the maximum number of the available grayscale
levels. The probability mass functions p(u),p(v) and p(u; v) are
empirically determined by obtaining the histograms of the grayscale
values of the sets S1 and S2. In order to take into account the lost
feature points during the tracking process a cost function Em is
defined:

Em(U; V;NT ;M2) = c1(
I(U;V )

Imax(U;V )
� �1

NT �M2

NT

+ c2)

(4)
The term I(U;V )

Imax(U;V )
is the mutual information part of the cost

function. The maximum mutual information Imax(U; V ) is [15]:

Imax(U; V ) = �

NmaxX
i=1

p(ui) log2 p(ui) (5)

The term NT�M2
NT

is a penalizing quantity depending on the num-
ber of the lost feature points during the tracking process. The con-
stants c1 = 0:5; c2 = 1; �1 = 1 are set in order to ensure that:

0 � Em � 1: (6)

In the case of total occlusion: p(v) and p(u; v) cannot be calcu-
lated since S2 = � and I(U;V )

Imax(U;V )
is set to 0 therefore:

I(U;V )

Imax(U; V )
= 0 and

NT �M2

NT

= 1 (7)

since M2 = 0 leading to the minimum value of Em. The maxi-
mum value of Em occurs when:

I(U; V ) = Imax(U; V ) and NT = M2 (8)

3. KULLBACK-LEIBLER DISTANCE BASED TRACKING
METRIC

The Kullback-Leibler distance is defined as [8]:

D(p(u)jjp(v)) =

NmaxX
i=1

p(ui) log2
p(ui)

p(vi)
(9)

and measures the similarity between p(ui) and p(vi). It is always
non negative and is not symmetric [10], i.e. in general:

D(p(u)jjp(v)) 6= D(p(v)jjp(u)): (10)

The Kullback-Leibler distance can be symmetrized [10]. A
symmetrical form of the Kullback-Leibler distance can be pro-
vided as

D(p(u)jjp(v))s1 =
1

2
(D(p(u)jjp(v)) +D(p(v)jjp(u))); (11)

D(p(u)jjp(v))s2 =
p
D(p(u)jjp(v))D(p(v)jjp(u)); (12)

or

D(p(u)jjp(v))s3 =
D(p(u)jjp(v))D(p(v)jjp(u))

(D(p(u)jjp(v)) +D(p(v)jjp(u)))
; (13)

Therefore a variety of Kullback-Leibler-based metrics can be
derived. An upper bound for the metric in equation (9) can be
easily found as follows, since:

D(p(u)jjp(v)) =

NmaxX
i=1

p(ui) log2 p(ui)�

NmaxX
i=1

p(ui) log2 p(vi)

(14)
The first term is negative or zero, while the second is positive.
Therefore, an upper bound of the Kullback-Leibler distance (9) is:

D(p(u)jjp(v))max � �

NmaxX
i=1

p(ui) log2 p(vi): (15)

The upper bounds of the two forms of the symmetrized Kullback-
Leibler distance provided are:

D(p(u)jjp(v))s1max =
1

2
(D(p(u)jjp(v))max+D(p(v)jjp(u))max)

(16)
for equation (11) and

D(p(u)jjp(v)))s2max =
p
D(p(u)jjp(v))maxD(p(v)jjp(u))max:

(17)
for equation (12)
A similar metric toEm(U; V;NT ;M2) based on the Kullback-

Leibler distance can be defined as:

EK = c1(1�
D(p(u)jjp(v))

Dmax(p(u)jjp(v))
� �1

NT �M2

NT

+ c2) (18)

and by construction is expected to behave similarly to Em: In the
context of present work c1 = 0:5, c2 = 1, �1 = 1: Large values of
EK imply a better matching between the reference and the current
region.

In order to obtain a metric for the symmetrical form of equa-
tion (13) we use the values of D(p(u)jjp(v)) and
D(p(v)jjp(u)), normalized with respect to their maximum values.
Therefore equation (18) will be in this case replaced with:

EK = c1(1�
D(p(u)jjp(v))

Dmax(p(u)jjp(v))
D(p(v)jjp(u))

Dmax(p(v)jjp(u))

(
D(p(u)jjp(v))

Dmax(p(u)jjp(v))
+

D(p(v)jjp(u))
Dmax(p(v)jjp(u))

)

��1
NT�M2
NT

+ c2) (19)

4. NORMALIZED CORRELATION BASED METRIC

Normalized correlation is defined as [12]:

Cor =

PW

i=1

PNk
j=1 Jr(x

r
i;j)Jc(x

c
i;j)qPW

i=1

PNk
j=1 J

2
r (x

r
i;j)
PW

i=1

PNk
j=1 J

2
c (x

c
i;j)

; (20)

where
Nk = min(M1;M2); (21)



expresses the similarity between Jr and Jc and can be used to
construct a metric similar to those already presented in Eq. (4)
,(18). The metric constructed is of the form:

Corr = c1(Cor � �1
NT �M2

NT

+ c2) (22)

and was also tested under similar tracking conditions with the
other two metrics. It stands that:

0 � Corr � 1 (23)

if the values of the constants c1,c2,�1 are appropriately chosen. In
the context of present work c1 = 0:5, c2 = 1, �1 = 1:

5. EXPERIMENTAL RESULTS

The above metrics were tested using the object tracking algorithm
presented in [13]. Image sequences containing total occlusion and
severe partial occlusion were used. Curves showing the variations
of metrics Em and Ek and Corr during the tracking process were
acquired for different occlusion situations.

Tracking results on the football image sequence, an artificial
image sequence and a head and shoulders image sequence con-
taining partial occlusion are presented in Figures 1,2 and 3 respec-
tively. The variations of the metric Em for the three sequences are
presented in Figure 4, while the metric Ek variations are presented
in Figure 5. The symmetric version of equation (13) was used. Fi-
nally, the variations of the Corr metric are presented in Figure
6. As it can be seen, metric Ek performs similarly to Em. Fur-
ther tests on the assymetric version have shown that no significant
change in Ek behavior was caused by its asymmetry. The normal-
ized correlation based metric Corr does not behave as well as the
information theory based metrics, especially in partial occlusion
situations. More specifically, in partial occlusion, Corr exhibits
an abnormal behavior as can be seen in Figure 6. It should be
also noted that, in the cases of the football and the artificial im-
age sequences, feature point regeneration occurs after object reap-
pearance. This is not the case in the head and shoulders image
sequence. This difference is shown in the metric curves. The met-
rics Em and Ek increase after the object reappearance in the foot-
ball and the artificial image sequences, but their values remain low
after object reappearance in the head and shoulders sequence.

6. CONCLUSIONS

In this paper, the performance of three different tracker reliability
metrics was assessed. Two of the metrics are based on information
theory, while the third is based on normalized correlation.

Experimental results have shown that the information theory
based metrics behave better in partial occlusion situations than the
normalized correlation based metric. A clear distinction in perfor-
mance between the two information theory based metrics cannot
be easily extracted. The Kullback-Leibler distance seems to pro-
vide more smooth curves. Nevertheless, the mutual information
has the advantage of being unique and symmetrical.
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(a) (b) (c)

Fig. 1. Football image sequence. Tracking of the head of the foot-
ball player: (a) before total occlusion, (b) total occlusion, (c) re-
gion reappearance.

(a) (b) (c)

Fig. 2. Artificial image sequence: (a) before total occlusion, (b)
during total occlusion, (c) region reappearance.

(a) (b)

Fig. 3. Head and shoulders image sequence: (a) beginning of par-
tial occlusion (frame 34), (b) disocclusion (frame 101).
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Fig. 4. (a) Values of the cost function Em for part of the football
image sequence (Fig. 1). Beginning of partial occlusion: frame
10. Beginning of total occlusion: frame 11. End of total occlu-
sion: frame 15. (b) Cost function Em versus frame number of
the artificial image sequence of Fig. 2. Beginning of partial oc-
clusion: frame 16. Beginning of total occlusion: frame 24. End
of total occlusion: frame 45. (c) Values of the cost function Em
for the head and shoulders image sequence (Fig. 3). Beginning of
partial occlusion: frame 34. End of partial occlusion: frame 101.
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Fig. 5. (a) Values of the cost function EK versus frame number for
part of the football image sequence (Fig. 1). Beginning of partial
occlusion: frame 10. Beginning of total occlusion: frame 11. End
of total occlusion: frame 14.(b) Cost function EK for the artifi-
cial image sequence (Fig. 2) versus frame number. Beginning of
partial occlusion: frame 16. Beginning of total occlusion: frame
24. End of total occlusion: frame 45. (c) Values of the cost func-
tion EK versus frame number for the head and shoulders image
sequence (Fig. 3). Beginning of partial occlusion: frame 34. End
of partial occlusion: frame 101.
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Fig. 6. (a) Normalized Correlation for the football image sequence
(Fig. 1) versus frame number. Beginning of partial occlusion:
frame 10. Beginning of total occlusion: frame 12. End of total oc-
clusion: frame 15.(b) Normalized Correlation for the artificial im-
age sequence (Fig. 2) versus frame number. Beginning of partial
occlusion: frame 16. Beginning of total occlusion: frame 25. End
of total occlusion: frame 45. (c) Normalized Correlation for the
head and shoulders image sequence (Fig. 3) versus frame number.
Beginning of partial occlusion: frame 34. End of partial occlusion:
frame 101.


