
Entropy-based Iterative Face Classification 

Marios Kyperountas1, Anastasios Tefas1, and Ioannis Pitas1,2 

 
1 Department of Informatics, Aristotle University of Thessaloniki, Greece 

2 Informatics and Telematics Institute, Centre for Research and Technology Hellas, Greece 

{mkyper, tefas, pitas}@aiia.csd.auth.gr 

 

Abstract. This paper presents a novel methodology whose task is to deal with the face 

classification problem. This algorithm uses discriminant analysis to project the face classes and 

a clustering algorithm to partition the projected face data, thus forming a set of discriminant 

clusters. Then, an iterative process creates subsets, whose cardinality is defined by an entropy-

based measure, that contain the most useful clusters. The best match to the test face is found 

when one final face class is retained. The standard UMIST and XM2VTS databases have been 

utilized to evaluate the performance of the proposed algorithm. Results show that it provides a 

good solution to the face classification problem. 
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1   Introduction 

In the past several years, great attention has been given to the active research field of 

face classification. For the Face Recognition (FR) problem, the true match to a test 

face, out of a number of N different training faces stored in a database, is sought. The 

performance of many state-of-the-art FR methods deteriorates rapidly when large, in 

terms of the number of faces, databases are considered [1, 2]. Specifically, the facial 

feature representation obtained by methods that use linear criteria, which normally 

require images to follow a convex distribution, is not capable of generalizing all the 

introduced variations due e.g. to large differences in viewpoint, illumination and 

facial expression, when large data sets are used. When nonlinear face representation 

methods are employed, problems such as over-fitting, computational complexity and 

difficulties in optimizing the involved parameters often appear [1]. Recently, various 

methods have attempted to solve the aforementioned problems. A widely used 

principle that has been used is the ‘divide and conquer’, which decomposes a database 

into smaller sets in order to piecewise learn the complex distribution by a mixture of 

local linear models. In [1], a separability criterion is employed to partition a training 

set from a large database into a set of smaller maximal separability clusters (MSCs) 

by utilizing a variant of linear discriminant analysis (LDA). Based on these MSCs, a 

hierarchical classification framework that consists of two levels of nearest neighbour 

classifiers is employed and the match is found. The work in [3] concentrates on the 

hierarchical partitioning of the feature spaces using hierarchical discriminant analysis 

(HDA). A space-tessellation tree is generated using the most expressive features 

(MEF), by employing Principal Component Analysis (PCA), and the most 



discriminating features (MDF), by employing LDA, at each tree level. This is done to 

avoid the limitations linked to global features, by deriving a recursively better-fitted 

set of features for each of the recursively subdivided sets of training samples. In 

general, hierarchical trees have been extensively used for pattern recognition 

purposes. In [4], an owner-specific LDA-subspace is developed in order to create a 

personalized face verification system. The training set is partitioned into a number of 

clusters and only a single cluster, which contains face data that is most similar to the 

owner face, is retained. The system assigns the owner training images to this 

particular cluster and this new data set is used to determine an LDA subspace that is 

used to compute the verification thresholds and matching score when a test face 

claims the identify of the owner. Rather than using the LDA space created by 

processing the full training set, the authors show that verification performance is 

enhanced when an owner-specific subspace is utilized. 
This paper presents a novel framework, onwards referred to as EbIC (Entropy-

based Iterative Classification), which applies a person-specific iterative classification 

that is based on an entropy measure. The clustering and discriminant analysis 

parameters of EbIC are heavily affected by the characteristics of the test face. This 

methodology is not restricted to face classification, but is able to deal with any 

problem that fits into the same formalism. At this point, it is imperative that two terms 

that are frequently used in this paper are defined: ‘class’ refers to a set of face images 

from the same person, whereas ‘cluster’ refers to a set of classes. The thi  face class is 

denoted by 
iY  whereas the 

thi  cluster by 
iC . It should be mentioned that face 

images of one person may even be partitioned into multiple clusters; thus, each of 

these clusters will contain a class from that particular person.  

Initially, the training and test face vectors are projected onto a LDA-space by 

employing Fisher’s criterion [5, 6], thus producing the most discriminant features 

(MDF). Subsequently, k-means is used to partition the training data into a set of K  

discriminant clusters 
iC  and the distance of the test face from the cluster centroids is 

used to collect a subset of 
'K  clusters that are closest to the test face. The cardinality 

of this subset is set through an entropy-based measure that is calculated by making 

use of the discrete probability histogram. The training data that reside in these 
'K  

clusters are merged and a new MDF-space of the merged face classes is found by 

applying LDA and k-means is once again used to partition the data into a set of 

clusters in a discriminant space. This process is repeated in as many iterations as 

necessary, until a single cluster is selected. Then, discriminant analysis is performed 

on this cluster, by using the data that reside in this cluster to produce the MDF-space, 

and the face class that is most similar to the test face is set as its identity match. 

2   Adaptive Discriminant Clustering 

The EbIC algorithm is an iterative process which, during each iteration, uses an 

adaptive MDF space that is closely related to the characteristics of the test face. More 

specifically, the set of clusters to be included in the training process that will define 

the future MDF space are selected based on how close they are to the test face in the 



current MDF space. Let us assume that an image X  of a test face is to be assigned to 

one of the Y  distinct classes 
iY  that lie in the training set space T . In addition, 

assume that each thi  class in T  is represented by 
i

NY
 images and the total number 

of training images is 
YN . Thus, the face images that comprise the training set T  can 

be represented by 
YNnn ,,1, Y . 

2.1   Linear Discriminant Analysis 

In order to linearly transform the face vectors such that they become separable, they 

are projected onto an MDF space. Let 
WS  and 

BS  be within-class and between-class 

scatter matrices [7, 8] of the training set Y . A well known and plausible criterion is 

to find a projection that maximizes the ratio of the between-class scatter vs. the 

within-class scatter (Fisher’s criterion): 
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Therefore, LDA is applied on Y  and the discriminant matrix W  of (1) is found. The 

training and test feature vectors are then projected to the MDF-space by      
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where 
ny  and x  are the training and test images in the form of vectors. Each training 

feature vector '

ny  is stored in a column of 'Y . 

2.2   Clustering Using k-means 

The k-means algorithm is then employed in an effort to partition the training data into 

the Y  distinct face classes. Given a set of N  data vectors, realized by 

,,,1, Nnn y  in the d-dimensional space, k-means is used to determine a set of K  

vectors in d , called cluster centroids, so as to minimize the sum of vector-to-

centroid distances, summed over all K  clusters. The objective function of k-means 

that is used in this paper employs the squared Euclidean distance and is presented in 

[9]. After the K  cluster centroids are found, e.g. YK  , a single vector 
'

ny  can be 

assigned to the cluster with the minimum vector-to-cluster-centroid distance, among 

the Y  distances that are calculated. The distance between each training feature vector 

and the Y  centroids, 
iμ , can be calculated by the Euclidean distance measure: 
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2.3   Entropy-based Generation of MDF-Spaces 

Let us consider a set of K  clusters, or partitions, in the data space T . The 

surrounding Voronoi region of the i-th cluster is denoted as 
iV . Theoretically, the a-

priori probability for each cluster to be the best matching one to any sample vector x  

of the feature space is calculated as such, if the probability density function  xp  is 

known:  

       
iV

ii dpVPP xxx .                     (5) 

For discrete data, the discrete probability histogram can replace the continuous 

probability density function:  
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where #  represents the cardinality of a set and N  the size of the training data set 

whose members are .1,,1,0,  Njj x  Let us consider a set of K  partitions in 

the training data space T  and their distribution  KPPPP ,,, 21  . The entropy, a 

commonly used measure that indicates the randomness of the distribution of a 

variable, can be defined as [10]: 
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An ‘ideal’ data partitioning separates the data such that overlap between partitions, 

e.g. the class overlap, is minimal, which is equivalent to minimizing the expected 

entropy of the partitions over all observed data.  

In this paper, the entropy-based measure is calculated in a new data space 

TT '  , which consists of a subset that retains 'K of the total K  clusters that are 

generated by the k-means algorithm. Let us assume that the 'K  clusters contain 'Y  

face classes. A needed assumption used to calculate the entropy is that a true match to 

the test face class X  exists within the 
'T  space. Let the probability for the i - th  face 

class '

iY , that is now contained in 
'T , to represent a true match for X  be 

 XY |'ii pP  . Since the prior probabilities  XY |'ip  are unknown, they can be 

defined using the discrete probability histogram, as in (6), as: 
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where 
'Y

N  is the total number of face images contained in 'T , and 
'

i

N
Y

 is the 

number of times that class i  is represented in 'T , e.g. 
'

i

N
Y

 different images of the 

person associated with class i  are contained in 'T . The value of 'K  is limited by the 

threshold 
HT  applied on the entropy value, which, in order to guarantee a low 

computational cost is approximated by substituting (8) into (7), so that the following 

is satisfied: 
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The approximated entropy values are used to guarantee that at each step of the EbIC 

algorithm an easier, in terms of the ability to achieve better separation among the 

classes, classification problem is defined. Threshold 
HT  is applied on the entropy 

value H  to limit the number of different classes that 'T  will contain. Essentially, this 

is done by limiting the number of clusters 'K  that comprise 'T . 

In the new MDF-space, created using the face data from the 'K  clusters, LDA will 

attempt to discriminate the different classes found in each of the 
'K  clusters. This 

enables the algorithm to formulate a clustering process that considers possible large 

variations in the set of images that represent each face class. For example, a portion of 

the set of images that corresponds to the thi  training person may present this person 

having facial hair, whereas others as not having facial hair. If these variations are 

larger than identity-related variations, then they are clustered into disjoint clusters. 

Thus, the match with the subset of the training images of class i  whose appearance is 

most similar to the test face is considered, so the best match can be found. 

3   Experimental Results 

In this section, the classification ability of EbIC is investigated by observing FR 

experiments using data from the XM2VTS and UMIST databases. Essentially, as in 

most FR applications, the classification experiments that are carried out fall under the 

small sample size (SSS) problem where the dimensionality of the samples is larger 

than the number of available training samples per subject [11, 12]. The performance 

of EbIC is presented for various degrees of how severe the SSS problem is. This is 

done by providing recognition rates for experiments where each face class 
iY  is 

represented by the smallest to the largest possible number of training samples, 
N . 

Since EbIC employs discriminant analysis, the smallest possible value is 2. The 

largest possible value of training samples for each face class 
iY  is determined by the 

number of available images in this class, 
i

NY
, and by considering that at least one of 

these samples needs to be excluded in order to be able to evaluate the recognition 

performance for that particular class. The remaining images that do not comprise the 

training set are used to test the performance of EbIC, thus, they constitute the test set. 

The training and test sets are created by random selection on each set of the 
i

NY
 

images of each face class. To give statistical significance to our experiments, this 

random selection is repeated 
RN  times, thus, 

RN  recognition rates are averaged in 

order to obtain the final recognition rate 
recR .  

The UMIST database consists of 20K  different face classes, each of which is 

represented by at least 19
i

NY
 images. Consequently, 17 recognition rates were 



derived for training sets that contained 18,,2 N  images from each of the 20 face 

classes. Each corresponding rate was the average out of 10R N  repetitions. The 

XM2VTS database consists of 200K  different face classes, each of which is 

represented by 8
i

NY
 images. The number of clusters 'K  that are retained at each 

clustering level is selected by using (9). The face classes residing in the final cluster 

are projected to the MDF-space that is created by processing only this specific set of  

data. The face class that is closest to the test face in this MDF-space is selected as the 

true match in identity. Table 1 reports the mean recognition rates, 
recR , obtained for 

FR experiments carried out on both face databases, for 10R N  independent runs. 

The entropy-based measure, which is utilized to determine the number of clusters that 

should be retained, leads to more accurate results than the ones in [13], where a power 

function that converges to unity was used instead. 

4   Conclusion 

A novel face classification methodology that employs person-specific adaptive 

discriminant clustering is proposed and its performance is evaluated. By making use 

of an entropy-based measure, the EbIC algorithm adapts the coordinates of the MDF-

space with respect to the characteristics of the test face and the training faces that are 

more similar to the test face. Thus, the FR problem is broken down to multiple easier 

classification tasks, in terms of achieving linear separability. The performance of this 

method was evaluated on standard face databases and results show that the proposed 

framework provides a good solution for face classification. 
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Table 1. Mean recognition rates for various numbers of training samples per subject 
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