
CAML – A Universal Configuration Language
for Dialogue Systems

Gergely Kovásznai1,2, Constantine Kotropoulos1, and Ioannis Pitas1

1 Dept. of Informatics,
Aristotle Univ. of Thessaloniki,

Thessaloniki, Greece
{kovasz,costas,pitas}@zeus.csd.auth.gr

2 On leave from the Institute of Mathematics and Informatics,
Univ. of Debrecen,
Debrecen, Hungary

kovasz@math.klte.hu

Abstract. In this paper, a novel architecture of a universal dialogue
system and its configuration language, so-called Conversational Agent
Markup Language (CAML), is proposed. The dialogue system embod-
ies a CLIPS engine in order to enable CAML to formulate procedural
and heuristic knowledge. CAML supports frames, functions, and cate-
gories that enable it: (a) to process wildcards, to control the inner state
through variables, and to formulate procedural knowledge in contrast to
Phoenix/CAT Dialog Manager; (b) to support nested macros, to con-
trol the inner state through variables, to assign priorities and weights
to states, and to interface with external databases in contrast to Dia-
log Management Tool Language (DMTL); (c) to implement context-free
grammars, to extract semantic content from user input through frames,
to allow numeric variables, and to interface with external databases as op-
posed to Artificial Intelligence Markup Language (AIML). The proposed
system is extensible in the sense that it can be embedded in any conver-
sational system that receives and emits XML content. Such a dialogue
system can be incorporated in multimodal interfaces, such as talking
head applications, conversational web interfaces, conversational database
interfaces, and conversational programming interfaces.

1 Introduction

Nowadays, human-machine interaction is changing dramatically toward spoken
dialogue. Many dialogue systems (DSs) or conversational agents have been de-
veloped for web applications, database interfaces or even chat bots [2]. State-
of-the-art DSs vary in their architecture, aims, and configuration. All of them
include three basic modules, namely a dialogue manager, a language parser, and
a language generator. Henceforth, the aforementioned modules will be referred
to as the DS core.

The features of any state-of-the-art DS core depend highly on the application
they have been designed for. Usually, the application is well-defined, but limited

V. Mař́ık et al. (Eds.): DEXA 2003, LNCS 2736, pp. 896–906, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

CAML – A Universal Configuration Language for Dialogue Systems 897

to a restricted domain, e.g. train/airplane reservation systems. Furthermore, the
core is highly influenced by the additional modules embedded in the same DS
(e.g., speech recognizer, speech synthesizer) in terms of the structure of input
(output) data received (emitted). Accordingly, any state-of-the-art DS core can-
not be used as a universal one, that can be embedded in any DS. For example,
the core of a chat bot cannot be transformed to the core for a conversational
database interface. The aim of this paper is to propose an architecture for a DS
core which is arbitrarily extensible, i.e., it can be extended with any external
resource and external module in order to be embedded in any DS. Another aim
of the paper is to design a novel configuration language for the core, which is uni-
versal in the sense that it can be attached to any spoken language or any possible
topic offering syntactic and semantical independence. Other strong points of the
configuration language are the low-level procedural knowledge formulation (for
experienced users) and its facilities to perform tasks closely related to dialogue
management (for naive users) that make it easily used. We call the proposed
configuration language Conversational Agent Markup Language (CAML). It is
an XML-compliant language. A DS core configured by CAML is called a CAML
core.

2 Overview of a Dialogue System Core

A general architecture of a DS core is shown in Figure 1. Its three modules
perform language parsing, dialogue management, and language generation. The
configuration language of the core must manage all the aforementioned tasks
and interrelate them.

Several techniques have been applied to these tasks. Since CAML is designed
to be a universal language, it supports the most flexible, commonly used tech-
niques. Although the use of fixed techniques may limit the utility of CAML, its

LANGUAGE PARSER

LANGUAGE GENERATOR

Database

External

semantic
content

input

output

semantic
content

core

core

Inference
engine

System
memory

DIALOGUE MANAGER

External

Database

LANGUAGE PARSER

Context−free
grammars

input

semantic
frames

output

LANGUAGE GENERATOR

Facts Rules

System

CLIPS engine

memory

core

core

DIALOGUE MANAGER &

Fig. 1. Architecture of a dialogue system core and the CAML core (on the right).

898 G. Kovásznai, C. Kotropoulos, and I. Pitas

extensibility makes it possible to replace these techniques with external ones, as
explained in Section 4.

2.1 Language Parsing

Language parsing extracts semantic information from the core input. Language
parsers employ several techniques. CAML supports robust parsing [1]. To config-
ure a robust language parser, a grammar must be specified in order to analyze
the core input. In terms of the grammar used, several types of language parsers
exist. CAML uses context-free (CF) grammars [3]. Since CF grammars are not
able to formulate complex data and relations that are common in real life, CAML
provides also facilities to combine CF grammars with procedural data in order
to alleviate the just described deficiency of CF grammars. In a CF grammar,
a set of non-terminal symbols and a set of CF rewriting rules are specified. If
the user input can be derived by a CF grammar, one or more parse-trees can be
constructed for it. Language parsers vary even in the representation of semantic
information extracted from a parse-tree. CAML uses the semantic frames [1].
CAML provides a facility for users to define the frames used in the extraction
of semantic information.

A CAML core analyzes the input in the following way: (1) it checks whether
the input can be derived from a non-terminal symbol in the grammar; (2) if it can
be derived, it constructs one of the possible parse-trees based on the priorities
of non-terminal symbols that are employed to define the tree having the highest
priority; (3) it extracts the semantic information from the parse-tree into frames.

2.2 Dialogue Management and Language Generation

Dialogue management determines the next state of the DS core according to
its current state and the currently extracted semantic information. It is also
responsible for generating the semantic content used during language generation
in order to provide a spoken output. The CAML core contains only one module
to perform the tasks related to these two phases, i.e., (1) to load the frames
extracted during language parsing; (2) to trace the inner state of the core (to
place the data into the system memory and to retrieve them if needed); (3) to
infer the next state of the core (i.e., the content of the system memory) from its
current state and the frames loaded; and (4) to generate output. Some dialogue
managers provide an interface for external databases, i.e., to perform queries in
the databases and to load the results into the system memory.

The CAML core contains a CLIPS engine. CLIPS is a tool for building
expert systems [9]. As a part of the CAML core system memory, CLIPS facts
are specified during the dialogue management and they are modified by CLIPS
rules defined by the user.

The system memory is a set of variables. A variable can get either a literal or
a frame value. A frame value is implemented as a CLIPS fact. CAML provides
the users facilities to formulate the procedural knowledge inherent in CLIPS
language and heuristic knowledge by defining CLIPS rules. CAML provides the

CAML – A Universal Configuration Language for Dialogue Systems 899

caml

set *

slot *

action ?condition ?macro *pattern ?

category *frame *

slot *

function *

argument *

li *

tag * min0max1 * wildcard * call *

get * call * output * return * if * while * text * tag *

then ? else ? do ?

Fig. 2. CAML DTD

following facilities in order to perform the aforementioned tasks: (1) it loads the
extracted frames into variables; (2) it declares variables, it sets and gets their
values; (3) it formulates the procedural and heuristic data in order to specify
CLIPS rules and to execute them; (4) it formulates the procedural data in order
to specify core output. CAML provides facilities to query in external databases
and to load the results into variables.

3 Specification of CAML

In this section, the syntactic elements of CAML are introduced. Since CAML is
an XML-compliant language, its structure can be specified by a Document Type
Definition (DTD) as can be seen in Figure 2. The use of syntactic elements is
demonstrated by examples which belong to a simple DS providing information
about museums.

3.1 Top Level Syntactic Elements

Three syntactic elements of CAML are accentuated, namely the frames, the
functions, and the categories. They are located on the highest syntactic level,
while the rest can be located only within another syntactic element. A frame
used during language parsing can be defined by the use of a <frame> tag con-
taining zero or more <slot> tags. As part of procedural knowledge, functions are
defined as parameterizable units of procedural data. They are implemented by
<function> tags.

<frame name="query">
<slot name="museum"/>
<slot name="monument"/>

</frame>

<function name="display-museum">
<output>

The following information was found about the museum
<argument number="1"/> located in <argument number="2"/>.
<argument number="3"/>

</output>
</function>

Fig. 3. Frames and functions.

900 G. Kovásznai, C. Kotropoulos, and I. Pitas

The most important syntactic element of CAML is the category. A category
can be defined by a <category> tag. Categories contain all parse-specific and
heuristic data on the points where the execution of procedural data starts. Each
category contains some rewriting rules, a condition on its validity, and an ac-
tion (i.e., procedural data) to be executed if the category is valid. Actually, two
types of categories can be defined by using the same syntax. If the given cate-
gory specifies at least one rewriting rule, it formulates parse-specific and strictly
procedural data. Otherwise, it formulates heuristic data, a CLIPS rule. The ex-
ecution of a CAML content attaches to the categories inside, and comprises the
following tasks: (1) to read core input; (2) to find the category having the high-
est priority to which the input fits; (3) to construct the parse-tree having the
highest priority for the input and the category; (4) to extract the frames from
the parse-tree; (5) to execute the actions of the categories within the parse-tree;
(6) to instruct the CLIPS engine to start the rule execution.

The tags <pattern> and <macro> contain so-called patterns, i.e., the right-
hand-side of rewriting rules. Within a pattern a non-terminal symbol can be
specified by the use of a: (1) <call> referring to a <category> or a <macro>;
(2) <opt> specifying an optional pattern; (3) <wildcard> which can be matched
with any text. The use of <wildcard> tags is a very important facility to define
partially specified patterns. The text matched with a wildcard can be stored in
a variable. Accordingly, we may check in a <condition> tag, whether its value is
equal to the value of another variable or can be found in an external database.
The tags <condition> and <action> contain procedural data. Each <condition>

tag must return a boolean value TRUE or FALSE.
By the use of the parameter priority, a priority number can be assigned to

a category, which is used to define the parse-tree having the highest priority or
to schedule the execution of CLIPS rules. The parameter extracted determines
whether the category takes part in the extraction of frames [6]. A set of cate-
gories, a constructed parse-tree, and an extracted frame are shown as examples
in Figure 4.

3.2 Procedural Knowledge

Procedural data can be specified within either a <function>, or a <condition>,
or an <action> tag. Procedural data is a set of CLIPS function calls, e.g.,
(str-cat "Hi" " Joe") or (= (+ 2 2) (- 7 3)). CAML provides some tags to
ease the situation of naive users, that is, to exempt them from using CLIPS
language, e.g., <output> for sending data to core output, <if> for checking a
conditional statement, <while> for making a loop in the execution, <call> for
calling an arbitrary CLIPS function or command, <return> for returning a value
from a CLIPS function, <text> for specifying a CLIPS string literal.

Special tags are needed to control variables. The tags <set> and <get> are
used to read and write a value in an object referred by a qualified name, i.e., a
name consisting of segments separated by dots. The first segment is the name
of a variable, the rest is a sequence of names of slots. E.g., person.name.surname
refers to the slot “surname” of the slot “name” of the variable “person”. The

CAML – A Universal Configuration Language for Dialogue Systems 901

<category name="tell museum" priority="10">
<pattern>

<call>speak</call>
about <call>museum</call>

</pattern>
<macro name="speak">

speak
tell me

</macro>
</category>

<category name="museum name"
extracted="name" priority="9">

<pattern>
<wildcard name="museum_name"/>

</pattern>
<condition>...</condition>

</category>

<category name="museum" extracted="museum">
<pattern>

<opt>museum called</opt>
<call>museum name</call>
<opt>located</opt> in
<call>museum location</call>

</pattern>

</category>

<category name="museum location"
extracted="city" priority="9">

<pattern>
<wildcard name="museum_city"/>

</pattern>
<condition>...</condition>

</category>

museum

museum
name

in museum
location

calledmuseum

ToulouseSpace Museum

tell me

tell museum

speak about

name="Space Museum"

town="Toulouse"
museum=

monument=""

query=

Fig. 4. A parse-tree and an extracted frame for a set of categories related to the input
“tell me about museum called Space Museum in Toulouse”.

referred object can get either a literal or a frame value. A frame value can be
formulated by the use of <slot> tags. In Figure 5, the use of <set> and <get> is
shown. Below each <get>, the value returned by the tag is written.

In order to read the content of a frame extracted during language parsing,
a <get> with the parameter type="frame" can be used. In this case, the first
segment of the qualified name is interpreted as the name of the given frame. An
example is shown in Figure 5.

<set name="x">
<slot name="name">Louvre Museum</slot>
<slot name="location">

<slot name="country">France</slot>
</slot>

</set>
.
.
.

<set name="x.location.city">Paris</set>

<get name="x.location.country"/>

➥ France

<get name="x.location"/>

➥ <slot name="country">France</slot>
<slot name="city">Paris</slot>

<get name="query.museum" type="frame"/>

➥ <slot name="name">Space Museum</slot>
<slot name="city">Toulouse</slot>

Fig. 5. Controlling variables.

902 G. Kovásznai, C. Kotropoulos, and I. Pitas

<category name="museum_rule">
<condition>

<return>
<call name="neq">

<get name="query.museum" type="frame"/>
<text></text>

</call>
</return>

</condition>
<action>

<set name="museum_query" type="sql"
database="jdbc:mysql://zeus.csd.auth.gr/museumdb?user=visitor&password=04eg35">

select name,city,text from museums where
name=’<get name="query.museum.name" type="frame"/>’ and
city=’<get name="query.museum.city" type="frame"/>’

</set>
<while>

<call name="neq">
<get name="museum_query"/>
<text></text>

</call>
<do/>

<call name="display-museum">
<get name="museum_query.name"/>
<get name="museum_query.city"/>
<get name="museum_query.text"/>

</call>
<get name="museum_query" type="sql"/>

</while>
</action>

</category>

Fig. 6. Interfacing an external database and formulating complex procedural data in
a category specifying a CLIPS rule.

In order to interface an external database, the parameter type="sql" can be
used in a <set> or a <get>. In this case, the content of a <set> is interpreted as
an SQL command. The database is accessed through JDBC interface, so it is
addressed by a JDBC URL. The first result of the SQL query is loaded into the
object referred by the qualified name. The next result can be loaded by the use
of a <get> with type="sql". An example can be found in Figure 6.

4 Extensibility of the CAML Core

One of the aims of the CAML core is its extension by external resources if
needed. The DS core reads a text input and emits a text output, traditionally
in a spoken language. The CAML core uses the same input channel and the
same output channel in order to be extensible. In order to communicate with
external resources through these channels, the CAML core reads structured text-
typed input and emits structured text-typed output. A quite easy way to structure
text data is the use of an XML-compliant language, e.g., if an external language
parser is used to extract semantic information from a user input, this information
can be easily incorporated in the input of the CAML core by the use of XML
tags. Similarly, semantic content can be embedded in the output of the CAML
core in order to make it accessible for an external language generator. The most
important reason of making a DS core able to read structured input and to emit

CAML – A Universal Configuration Language for Dialogue Systems 903

speech
recognizer

facial gesture
recognizer

language generator
external

text−to−speech
system

talking head
renderer

external
language parser

CAML core

Perl
interpreter

Java
interpreterDatabase

External

encoder
core input

parser
core output

semantic
content

parameters
emotional

video

input

audio

input

text

XML

XML
text

parameters
speech

emotional
parameters

output

output

content
semantic audio

video
query operation

core output

core input

Fig. 7. Architecture of a possible dialogue system including the CAML core.

structured output is the multi-modal nature of human communication. Humans
communicate by expressing their thoughts in several ways simultaneously, i.e.,
not only by the words uttered, but also by prosody of speech, facial gestures,
hand movements, etc. Three possible applications are:

1. Talking head applications: an animated human head which the user can con-
duct a dialogue with. The core output could be in Virtual Human Markup
Language (VHML) [5] in order to incorporate information about emotions,
gestures, movements, etc.

2. Web pages with conversational interfaces: a web page which provides a nat-
ural language interface to help web navigation. Core output could be in
Hypertext Markup Language (HTML) in order to generate whole web pages
or web page segments, and to execute scripts.

3. Conversational programming interfaces: a DS which can “translate” user
requests into procedural data in a programming language and execute them.
The source code in a given programming language could be encapsulated
by an XML tag in core output, e.g., <cplusplus>...</cplusplus> for C++,
<java>...</java> for Java, etc.

In order to embed the CAML core in a DS, two modules are necessary. The
first module encodes the core input in XML (core input encoder) and the second
module parses the core output (core output parser). In Figure 7, a possible
architecture of such a DS is shown.

In order to support XML core input and core output, CAML allows embed-
ding XML tags in patterns of categories and within <output> tags. Since not
every XML tag is included in the CAML DTD, its reserved characters must be
encoded into XML standard entities (e.g., “<” into “<”, “"” into “"e;”).
CAML provides a tag called <tag> to exempt naive users from encoding them
manually. In Figure 8, the use of <tag> is demonstrated by two examples with
inputs that should be matched and the output that is generated.

Bi-directional communication is needed through the output channel of a
CAML core in some cases. A typical example is the case of conversational pro-
gramming interfaces, because there we need to load the results of operations

904 G. Kovásznai, C. Kotropoulos, and I. Pitas

➥ You are ugly

➥ <vhml>
<anger>

How nice you are
</anger>

</vhml>

<pattern>
You are ugly
<tag name="vhml">

<tag name="anger">
How nice you are

</tag>
</tag>

</pattern>

<set name="person name">Joe</set>

.

.

.
<output>

<tag name="vhml">
<tag name="surprise" _intensity="50">

What are you doing here, <get name="person name"/>?
</tag>

</tag>
</output>

➥ <vhml>
<suprise intensity="50">

What are you doing here, Joe?
</suprise>

</vhml>

Fig. 8. Structured core input and core output.

implemented in any programming language back into the core. To implement
this, the core output parser must be able to specify return values for all XML
tags embedded in core output and then to load them back through the output
channel of the CAML core, as return values of the given <output> tags. The
specification of these return values is a technical problem which has to be solved
by the core output parser, hence it does not belong to the CAML and the CAML
cores.

5 Comparison with Other Configuration Languages

In this section, the abilities of CAML are compared to the abilities of three
state-of-the-art configuration languages for a DS core according to six aspects,
presented in Table 1. CAML has been inspired by these languages. Any of them is
used in a specific area. CAML can be conceived as a superset of these languages,
with respect to universality and abilities.

Table 1. Abilities of other configuration languages.

Language
parsing

Controlling
inner state

Procedural
knowledge

Heuristic
knowledge

Language
generation

Interfacing
databases

Phoenix/CAT good good no poor poor yes
DMTL poor poor no medium poor no
AIML poor medium medium no medium no

The Phoenix Semantic Parser [6] was developed by the Center of Spoken
Language Research and used in CAT Dialog Manager, which was incorporated
in CU Communicator [7] for flight, car, and hotel rental agents. The configuration
language of the Phoenix Semantic Parser provides facilities to specify a set of
context-free grammars and to extract the semantic information from the core
input into frames. Only fully-specified core inputs can be formulated. The CAT
Dialog Manager provides facilities to load the frames extracted by the Phoenix

CAML – A Universal Configuration Language for Dialogue Systems 905

Semantic Parser and to perform dialogue management tasks on them. These
tasks can be specified in CAT’s proprietary configuration language, which assigns
so-called text templates to the slots of the frames. The inner state of the system
is controlled through frames and global variables. The level of determination
to display text templates is not specified by the CAT documentation, but it
could be non-deterministic. System-defined weights are assigned to parse-trees,
but user is not able to specify weights. Only three types of text templates (core
outputs) can be assigned to the slots: prompts, confirmations, and sql queries.

The Dialogue Management Tool Language (DMTL) is the configuration lan-
guage for the Dialog Management Tool (DMT) [8]. This language was tested
embedding VHML content in talking head applications. Context-free grammars
can be specified, but there is no facility to generate parse-trees higher than three
levels. Only fully-specified core inputs can be formulated. There is no facility to
extract semantic information from inputs. The states of the system can be de-
fined and linked to each other, but no data can be placed into the system memory
by the user. Validity conditions can be attached to the states, however it is not
real procedural knowledge. Weights can be assigned to core outputs, but not
to states or core inputs. Two types of core outputs can be specified, namely
responses and signals.

The Artificial Intelligence Markup Language (AIML) was developed by A. L.
I. C. E. AI Foundation as the configuration language of Alicebot systems, which
are used in chat bots. AIML parsing is not based on context-free grammars,
but rather on simple, linear pattern matching. Partially specified core inputs
can be formulated. There is no facility to extract semantic content from the
core input. Variables can be used, but only text values can be assigned to them.
Procedural data can be formulated mostly to read, write or check the value of a
variable. There are only a few facilities to operate with such a value. These is no
possibility to operate with numeric values. Patterns are matched with the core
input in alphabetic order, there are no facilities to set their priority. The core
output is generated by the execution of procedural data. Only text output can
be emitted.

Conclusions

We have designed a novel universal configuration language and an extensible
architecture for a dialogue system core. We have outlined several state-of-the-art
areas, where such a core can be used. The proposed language has been compared
to other state-of-the-art configuration languages and its features are found to
comprise a superset of those offered by the other configuration languages. After
the design phase, we have developed the first version of the proposed CAML
core.

Acknowledgement. This work has been supported by the European Union
funded Research Training Network “Multi-modal Human-Computer Interaction”
(MUHCI).

906 G. Kovásznai, C. Kotropoulos, and I. Pitas

References

1. R. Suereth, Developing Natural Language Interfaces. N.Y., McGraw-Hill, 1997.
2. N. Ole Bernsen, H. Dybkjær, and L. Dybkjær, Designing Interactive Speech

Systems. London, Springer-Verlag, 1998.
3. X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing. Upper Saddle

River, N.J., Prentice Hall PTR, 2001.
4. A. L. Gorin, A. Abella, T. Alonso, G. Riccardi, and J. H. Wright, “Automated

Natural Spoken Dialog”, IEEE Computer, vol. 35, no. 4, pp. 51–56, April 2002.
5. A. Marriott, “VHML – Virtual Human Markup Language”, in Proc. OzCHI

2001 Workshop, 2001.
6. W. Ward, “Understanding Spontaneous Speech: the Phoenix System”, in Proc.

ICASSP 91, 1991, pp. 365–367.
7. B. Pellom, and W. Ward, S. Pradhan, “The CU Communicator: An Architecture

for Dialogue Systems”, in Proc. ICSLP, Beijing China, November 2000.
8. C. Gustavsson, L. Strindlund, and E. Wiknertz, “Dialogue Management Tool”,

in Proc. OzCHI 2001 Workshop, 2001.
9. CLIPS, http://www.ghg.net/clips/CLIPS.html.

	Introduction
	Overview of a Dialogue System Core
	Language Parsing
	Dialogue Management and Language Generation

	Specification of CAML
	Top Level Syntactic Elements
	Procedural Knowledge

	Extensibility of the CAML Core
	Comparison with Other Configuration Languages

